You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
glueberry/tutorials/gensim_topic_transformation...

216 lines
7.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO )"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-23 18:15:06,938 : INFO : adding document #0 to Dictionary<0 unique tokens: []>\n",
"2022-05-23 18:15:06,939 : INFO : built Dictionary<12 unique tokens: ['computer', 'human', 'interface', 'response', 'survey']...> from 9 documents (total 29 corpus positions)\n",
"2022-05-23 18:15:06,939 : INFO : Dictionary lifecycle event {'msg': \"built Dictionary<12 unique tokens: ['computer', 'human', 'interface', 'response', 'survey']...> from 9 documents (total 29 corpus positions)\", 'datetime': '2022-05-23T18:15:06.939467', 'gensim': '4.2.0', 'python': '3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 2022, 14:12:15) [MSC v.1929 64 bit (AMD64)]', 'platform': 'Windows-10-10.0.22000-SP0', 'event': 'created'}\n"
]
}
],
"source": [
"from collections import defaultdict\n",
"from gensim import corpora\n",
"\n",
"documents = [\n",
" \"Human machine interface for lab abc computer applications\",\n",
" \"A survey of user opinion of computer system response time\",\n",
" \"The EPS user interface management system\",\n",
" \"System and human system engineering testing of EPS\",\n",
" \"Relation of user perceived response time to error measurement\",\n",
" \"The generation of random binary unordered trees\",\n",
" \"The intersection graph of paths in trees\",\n",
" \"Graph minors IV Widths of trees and well quasi ordering\",\n",
" \"Graph minors A survey\",\n",
"]\n",
"\n",
"# remove common words and tokenize\n",
"stoplist = set('for a of the and to in'.split())\n",
"texts = [\n",
" [word for word in document.lower().split() if word not in stoplist]\n",
" for document in documents\n",
"]\n",
"\n",
"# remove words that appear only once\n",
"frequency = defaultdict(int)\n",
"for text in texts:\n",
" for token in text:\n",
" frequency[token] += 1\n",
"\n",
"texts = [\n",
" [token for token in text if frequency[token] > 1]\n",
" for text in texts\n",
"]\n",
"\n",
"dictionary = corpora.Dictionary(texts)\n",
"corpus = [dictionary.doc2bow(text) for text in texts]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-23 18:16:10,608 : INFO : collecting document frequencies\n",
"2022-05-23 18:16:10,609 : INFO : PROGRESS: processing document #0\n",
"2022-05-23 18:16:10,609 : INFO : TfidfModel lifecycle event {'msg': 'calculated IDF weights for 9 documents and 12 features (28 matrix non-zeros)', 'datetime': '2022-05-23T18:16:10.609938', 'gensim': '4.2.0', 'python': '3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 2022, 14:12:15) [MSC v.1929 64 bit (AMD64)]', 'platform': 'Windows-10-10.0.22000-SP0', 'event': 'initialize'}\n"
]
}
],
"source": [
"from gensim import models\n",
"\n",
"tfidf = models.TfidfModel(corpus) # 1. initialize the model"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(0, 0.7071067811865476), (1, 0.7071067811865476)]\n"
]
}
],
"source": [
"doc_bow = [(0,1), (1,1)]\n",
"print(tfidf[doc_bow]) # 2. use the model to transform vectors"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(0, 0.5773502691896257), (1, 0.5773502691896257), (2, 0.5773502691896257)]\n",
"[(0, 0.44424552527467476), (3, 0.44424552527467476), (4, 0.44424552527467476), (5, 0.3244870206138555), (6, 0.44424552527467476), (7, 0.3244870206138555)]\n",
"[(2, 0.5710059809418182), (5, 0.4170757362022777), (7, 0.4170757362022777), (8, 0.5710059809418182)]\n",
"[(1, 0.49182558987264147), (5, 0.7184811607083769), (8, 0.49182558987264147)]\n",
"[(3, 0.6282580468670046), (6, 0.6282580468670046), (7, 0.45889394536615247)]\n",
"[(9, 1.0)]\n",
"[(9, 0.7071067811865475), (10, 0.7071067811865475)]\n",
"[(9, 0.5080429008916749), (10, 0.5080429008916749), (11, 0.695546419520037)]\n",
"[(4, 0.6282580468670046), (10, 0.45889394536615247), (11, 0.6282580468670046)]\n"
]
}
],
"source": [
"corpus_tfidf = tfidf[corpus]\n",
"for doc in corpus_tfidf:\n",
" print(doc)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2022-05-23 18:40:30,354 : INFO : using serial LSI version on this node\n",
"2022-05-23 18:40:30,354 : INFO : updating model with new documents\n",
"2022-05-23 18:40:30,355 : INFO : preparing a new chunk of documents\n",
"2022-05-23 18:40:30,358 : INFO : using 100 extra samples and 2 power iterations\n",
"2022-05-23 18:40:30,359 : INFO : 1st phase: constructing (12, 102) action matrix\n",
"2022-05-23 18:40:30,360 : INFO : orthonormalizing (12, 102) action matrix\n",
"2022-05-23 18:40:30,362 : INFO : 2nd phase: running dense svd on (12, 9) matrix\n",
"2022-05-23 18:40:30,363 : INFO : computing the final decomposition\n",
"2022-05-23 18:40:30,364 : INFO : keeping 2 factors (discarding 47.565% of energy spectrum)\n",
"2022-05-23 18:40:30,365 : INFO : processed documents up to #9\n",
"2022-05-23 18:40:30,365 : INFO : topic #0(1.594): 0.703*\"trees\" + 0.538*\"graph\" + 0.402*\"minors\" + 0.187*\"survey\" + 0.061*\"system\" + 0.060*\"time\" + 0.060*\"response\" + 0.058*\"user\" + 0.049*\"computer\" + 0.035*\"interface\"\n",
"2022-05-23 18:40:30,365 : INFO : topic #1(1.476): 0.460*\"system\" + 0.373*\"user\" + 0.332*\"eps\" + 0.328*\"interface\" + 0.320*\"response\" + 0.320*\"time\" + 0.293*\"computer\" + 0.280*\"human\" + 0.171*\"survey\" + -0.161*\"trees\"\n",
"2022-05-23 18:40:30,365 : INFO : LsiModel lifecycle event {'msg': 'trained LsiModel<num_terms=12, num_topics=2, decay=1.0, chunksize=20000> in 0.01s', 'datetime': '2022-05-23T18:40:30.365269', 'gensim': '4.2.0', 'python': '3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 2022, 14:12:15) [MSC v.1929 64 bit (AMD64)]', 'platform': 'Windows-10-10.0.22000-SP0', 'event': 'created'}\n"
]
}
],
"source": [
"lsi_model = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=2) # initialize an LSI transf\n",
"corpus_lsi = lsi_model[corpus_tfidf] # create a double wrapper over the original"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"''"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lsi_model.print_topic(2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"interpreter": {
"hash": "a991b7e5a58af45663279ce1606e861d35361e78ec04a120e3cc987f7e474d97"
},
"kernelspec": {
"display_name": "Python 3.10.2 ('venv': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.2"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}