added local version of pixel ring

master
joca 6 years ago
parent 69795e880f
commit 12bcf9a5ac

@ -0,0 +1,52 @@
from . import usb_pixel_ring_v1
from . import usb_pixel_ring_v2
from .apa102_pixel_ring import PixelRing
pixel_ring = usb_pixel_ring_v2.find()
if not pixel_ring:
pixel_ring = usb_pixel_ring_v1.find()
if not pixel_ring:
pixel_ring = PixelRing()
USAGE = '''
If the hardware is ReSpeaker 4 Mic Array for Pi or ReSpeaker V2,
there is a power-enable pin which should be enabled at first.
+ ReSpeaker 4 Mic Array for Pi:
import gpiozero
power = LED(5)
power.on()
+ ReSpeaker V2:
import mraa
power = mraa.Gpio(12)
power.dir(mraa.DIR_OUT)
power.write(0)
'''
def main():
import time
if isinstance(pixel_ring, usb_pixel_ring_v2.PixelRing):
print('Found ReSpeaker USB 4 Mic Array')
elif isinstance(pixel_ring, usb_pixel_ring_v1.UsbPixelRing):
print('Found ReSpeaker USB 6+1 Mic Array')
else:
print('Control APA102 RGB LEDs via SPI')
print(USAGE)
pixel_ring.think()
time.sleep(3)
pixel_ring.off()
time.sleep(1)
if __name__ == '__main__':
main()

@ -0,0 +1,243 @@
"""
from https://github.com/tinue/APA102_Pi
This is the main driver module for APA102 LEDs
"""
import spidev
from math import ceil
RGB_MAP = { 'rgb': [3, 2, 1], 'rbg': [3, 1, 2], 'grb': [2, 3, 1],
'gbr': [2, 1, 3], 'brg': [1, 3, 2], 'bgr': [1, 2, 3] }
class APA102:
"""
Driver for APA102 LEDS (aka "DotStar").
(c) Martin Erzberger 2016-2017
My very first Python code, so I am sure there is a lot to be optimized ;)
Public methods are:
- set_pixel
- set_pixel_rgb
- show
- clear_strip
- cleanup
Helper methods for color manipulation are:
- combine_color
- wheel
The rest of the methods are used internally and should not be used by the
user of the library.
Very brief overview of APA102: An APA102 LED is addressed with SPI. The bits
are shifted in one by one, starting with the least significant bit.
An LED usually just forwards everything that is sent to its data-in to
data-out. While doing this, it remembers its own color and keeps glowing
with that color as long as there is power.
An LED can be switched to not forward the data, but instead use the data
to change it's own color. This is done by sending (at least) 32 bits of
zeroes to data-in. The LED then accepts the next correct 32 bit LED
frame (with color information) as its new color setting.
After having received the 32 bit color frame, the LED changes color,
and then resumes to just copying data-in to data-out.
The really clever bit is this: While receiving the 32 bit LED frame,
the LED sends zeroes on its data-out line. Because a color frame is
32 bits, the LED sends 32 bits of zeroes to the next LED.
As we have seen above, this means that the next LED is now ready
to accept a color frame and update its color.
So that's really the entire protocol:
- Start by sending 32 bits of zeroes. This prepares LED 1 to update
its color.
- Send color information one by one, starting with the color for LED 1,
then LED 2 etc.
- Finish off by cycling the clock line a few times to get all data
to the very last LED on the strip
The last step is necessary, because each LED delays forwarding the data
a bit. Imagine ten people in a row. When you yell the last color
information, i.e. the one for person ten, to the first person in
the line, then you are not finished yet. Person one has to turn around
and yell it to person 2, and so on. So it takes ten additional "dummy"
cycles until person ten knows the color. When you look closer,
you will see that not even person 9 knows its own color yet. This
information is still with person 2. Essentially the driver sends additional
zeroes to LED 1 as long as it takes for the last color frame to make it
down the line to the last LED.
"""
# Constants
MAX_BRIGHTNESS = 0b11111 # Safeguard: Set to a value appropriate for your setup
LED_START = 0b11100000 # Three "1" bits, followed by 5 brightness bits
def __init__(self, num_led, global_brightness=MAX_BRIGHTNESS,
order='rgb', bus=0, device=1, max_speed_hz=8000000):
self.num_led = num_led # The number of LEDs in the Strip
order = order.lower()
self.rgb = RGB_MAP.get(order, RGB_MAP['rgb'])
# Limit the brightness to the maximum if it's set higher
if global_brightness > self.MAX_BRIGHTNESS:
self.global_brightness = self.MAX_BRIGHTNESS
else:
self.global_brightness = global_brightness
self.leds = [self.LED_START,0,0,0] * self.num_led # Pixel buffer
self.spi = spidev.SpiDev() # Init the SPI device
self.spi.open(bus, device) # Open SPI port 0, slave device (CS) 1
# Up the speed a bit, so that the LEDs are painted faster
if max_speed_hz:
self.spi.max_speed_hz = max_speed_hz
def clock_start_frame(self):
"""Sends a start frame to the LED strip.
This method clocks out a start frame, telling the receiving LED
that it must update its own color now.
"""
self.spi.xfer2([0] * 4) # Start frame, 32 zero bits
def clock_end_frame(self):
"""Sends an end frame to the LED strip.
As explained above, dummy data must be sent after the last real colour
information so that all of the data can reach its destination down the line.
The delay is not as bad as with the human example above.
It is only 1/2 bit per LED. This is because the SPI clock line
needs to be inverted.
Say a bit is ready on the SPI data line. The sender communicates
this by toggling the clock line. The bit is read by the LED
and immediately forwarded to the output data line. When the clock goes
down again on the input side, the LED will toggle the clock up
on the output to tell the next LED that the bit is ready.
After one LED the clock is inverted, and after two LEDs it is in sync
again, but one cycle behind. Therefore, for every two LEDs, one bit
of delay gets accumulated. For 300 LEDs, 150 additional bits must be fed to
the input of LED one so that the data can reach the last LED.
Ultimately, we need to send additional numLEDs/2 arbitrary data bits,
in order to trigger numLEDs/2 additional clock changes. This driver
sends zeroes, which has the benefit of getting LED one partially or
fully ready for the next update to the strip. An optimized version
of the driver could omit the "clockStartFrame" method if enough zeroes have
been sent as part of "clockEndFrame".
"""
self.spi.xfer2([0xFF] * 4)
# Round up num_led/2 bits (or num_led/16 bytes)
#for _ in range((self.num_led + 15) // 16):
# self.spi.xfer2([0x00])
def clear_strip(self):
""" Turns off the strip and shows the result right away."""
for led in range(self.num_led):
self.set_pixel(led, 0, 0, 0)
self.show()
def set_pixel(self, led_num, red, green, blue, bright_percent=100):
"""Sets the color of one pixel in the LED stripe.
The changed pixel is not shown yet on the Stripe, it is only
written to the pixel buffer. Colors are passed individually.
If brightness is not set the global brightness setting is used.
"""
if led_num < 0:
return # Pixel is invisible, so ignore
if led_num >= self.num_led:
return # again, invisible
# Calculate pixel brightness as a percentage of the
# defined global_brightness. Round up to nearest integer
# as we expect some brightness unless set to 0
brightness = int(ceil(bright_percent*self.global_brightness/100.0))
# LED startframe is three "1" bits, followed by 5 brightness bits
ledstart = (brightness & 0b00011111) | self.LED_START
start_index = 4 * led_num
self.leds[start_index] = ledstart
self.leds[start_index + self.rgb[0]] = red
self.leds[start_index + self.rgb[1]] = green
self.leds[start_index + self.rgb[2]] = blue
def set_pixel_rgb(self, led_num, rgb_color, bright_percent=100):
"""Sets the color of one pixel in the LED stripe.
The changed pixel is not shown yet on the Stripe, it is only
written to the pixel buffer.
Colors are passed combined (3 bytes concatenated)
If brightness is not set the global brightness setting is used.
"""
self.set_pixel(led_num, (rgb_color & 0xFF0000) >> 16,
(rgb_color & 0x00FF00) >> 8, rgb_color & 0x0000FF,
bright_percent)
def rotate(self, positions=1):
""" Rotate the LEDs by the specified number of positions.
Treating the internal LED array as a circular buffer, rotate it by
the specified number of positions. The number could be negative,
which means rotating in the opposite direction.
"""
cutoff = 4 * (positions % self.num_led)
self.leds = self.leds[cutoff:] + self.leds[:cutoff]
def show(self):
"""Sends the content of the pixel buffer to the strip.
Todo: More than 1024 LEDs requires more than one xfer operation.
"""
self.clock_start_frame()
# xfer2 kills the list, unfortunately. So it must be copied first
# SPI takes up to 4096 Integers. So we are fine for up to 1024 LEDs.
data = list(self.leds)
while data:
self.spi.xfer2(data[:32])
data = data[32:]
self.clock_end_frame()
def cleanup(self):
"""Release the SPI device; Call this method at the end"""
self.spi.close() # Close SPI port
@staticmethod
def combine_color(red, green, blue):
"""Make one 3*8 byte color value."""
return (red << 16) + (green << 8) + blue
def wheel(self, wheel_pos):
"""Get a color from a color wheel; Green -> Red -> Blue -> Green"""
if wheel_pos > 255:
wheel_pos = 255 # Safeguard
if wheel_pos < 85: # Green -> Red
return self.combine_color(wheel_pos * 3, 255 - wheel_pos * 3, 0)
if wheel_pos < 170: # Red -> Blue
wheel_pos -= 85
return self.combine_color(255 - wheel_pos * 3, 0, wheel_pos * 3)
# Blue -> Green
wheel_pos -= 170
return self.combine_color(0, wheel_pos * 3, 255 - wheel_pos * 3)
def dump_array(self):
"""For debug purposes: Dump the LED array onto the console."""
print(self.leds)

@ -0,0 +1,105 @@
import time
import threading
try:
import queue as Queue
except ImportError:
import Queue as Queue
from .apa102 import APA102
from .pattern import Echo, GoogleHome
class PixelRing(object):
PIXELS_N = 12
def __init__(self, pattern='google'):
if pattern == 'echo':
self.pattern = Echo(show=self.show)
else:
self.pattern = GoogleHome(show=self.show)
self.dev = APA102(num_led=self.PIXELS_N)
self.queue = Queue.Queue()
self.thread = threading.Thread(target=self._run)
self.thread.daemon = True
self.thread.start()
self.off()
def set_brightness(self, brightness):
if brightness > 100:
brightness = 100
if brightness > 0:
self.dev.global_brightness = int(0b11111 * brightness / 100)
def change_pattern(self, pattern):
if pattern == 'echo':
self.pattern = Echo(show=self.show)
else:
self.pattern = GoogleHome(show=self.show)
def wakeup(self, direction=0):
def f():
self.pattern.wakeup(direction)
self.put(f)
def listen(self):
self.put(self.pattern.listen)
def think(self):
self.put(self.pattern.think)
wait = think
def speak(self):
self.put(self.pattern.speak)
def off(self):
self.put(self.pattern.off)
def put(self, func):
self.pattern.stop = True
self.queue.put(func)
def _run(self):
while True:
func = self.queue.get()
self.pattern.stop = False
func()
def show(self, data):
for i in range(self.PIXELS_N):
self.dev.set_pixel(i, int(data[4*i + 1]), int(data[4*i + 2]), int(data[4*i + 3]))
self.dev.show()
def set_color(self, rgb=None, r=0, g=0, b=0):
if rgb:
r, g, b = (rgb >> 16) & 0xFF, (rgb >> 8) & 0xFF, rgb & 0xFF
for i in range(self.PIXELS_N):
self.dev.set_pixel(i, r, g, b)
self.dev.show()
if __name__ == '__main__':
pixel_ring = PixelRing()
while True:
try:
pixel_ring.wakeup()
time.sleep(3)
pixel_ring.think()
time.sleep(3)
pixel_ring.speak()
time.sleep(6)
pixel_ring.off()
time.sleep(3)
except KeyboardInterrupt:
break
pixel_ring.off()
time.sleep(1)

@ -0,0 +1,145 @@
"""
LED pattern like Echo
"""
import time
class Echo(object):
brightness = 24 * 8
def __init__(self, show, number=12):
self.pixels_number = number
self.pixels = [0] * 4 * number
if not callable(show):
raise ValueError('show parameter is not callable')
self.show = show
self.stop = False
def wakeup(self, direction=0):
position = int((direction + 15) / (360 / self.pixels_number)) % self.pixels_number
pixels = [0, 0, 0, self.brightness] * self.pixels_number
pixels[position * 4 + 2] = self.brightness
self.show(pixels)
def listen(self):
pixels = [0, 0, 0, self.brightness] * self.pixels_number
self.show(pixels)
def think(self):
half_brightness = int(self.brightness / 2)
pixels = [0, 0, half_brightness, half_brightness, 0, 0, 0, self.brightness] * self.pixels_number
while not self.stop:
self.show(pixels)
time.sleep(0.2)
pixels = pixels[-4:] + pixels[:-4]
def speak(self):
step = int(self.brightness / 12)
position = int(self.brightness / 2)
while not self.stop:
pixels = [0, 0, position, self.brightness - position] * self.pixels_number
self.show(pixels)
time.sleep(0.01)
if position <= 0:
step = int(self.brightness / 12)
time.sleep(0.4)
elif position >= int(self.brightness / 2):
step = - int(self.brightness / 12)
time.sleep(0.4)
position += step
def off(self):
self.show([0] * 4 * 12)
class GoogleHome(object):
def __init__(self, show):
self.basis = [0] * 4 * 12
self.basis[0 * 4 + 1] = 8
self.basis[3 * 4 + 1] = 4
self.basis[3 * 4 + 2] = 4
self.basis[6 * 4 + 2] = 8
self.basis[9 * 4 + 3] = 8
self.pixels = self.basis
if not callable(show):
raise ValueError('show parameter is not callable')
self.show = show
self.stop = False
def wakeup(self, direction=0):
position = int((direction + 90 + 15) / 30) % 12
basis = self.basis[position*-4:] + self.basis[:position*-4]
pixels = [v * 25 for v in basis]
self.show(pixels)
time.sleep(0.1)
pixels = pixels[-4:] + pixels[:-4]
self.show(pixels)
time.sleep(0.1)
for i in range(2):
new_pixels = pixels[-4:] + pixels[:-4]
self.show([v/2+pixels[index] for index, v in enumerate(new_pixels)])
pixels = new_pixels
time.sleep(0.1)
self.show(pixels)
self.pixels = pixels
def listen(self):
pixels = self.pixels
for i in range(1, 25):
self.show([(v * i / 24) for v in pixels])
time.sleep(0.01)
def think(self):
pixels = self.pixels
while not self.stop:
pixels = pixels[-4:] + pixels[:-4]
self.show(pixels)
time.sleep(0.2)
t = 0.1
for i in range(0, 5):
pixels = pixels[-4:] + pixels[:-4]
self.show([(v * (4 - i) / 4) for v in pixels])
time.sleep(t)
t /= 2
self.pixels = pixels
def speak(self):
pixels = self.pixels
step = 1
brightness = 5
while not self.stop:
self.show([(v * brightness / 24) for v in pixels])
time.sleep(0.02)
if brightness <= 5:
step = 1
time.sleep(0.4)
elif brightness >= 24:
step = -1
time.sleep(0.4)
brightness += step
def off(self):
self.show([0] * 4 * 12)

@ -0,0 +1,26 @@
class PixelRing(object):
def __init__(self):
pass
def show(self, data):
pass
def set_color(self, rgb=None, r=0, g=0, b=0):
pass
def wakeup(self, angle=None):
pass
def listen(self):
pass
def think(self):
pass
def speak(self):
pass
def off(self):
pass

@ -0,0 +1,190 @@
import usb.core
import usb.util
class HidDevice:
"""
This class provides basic functions to access
a USB HID device to write an endpoint
"""
def __init__(self, dev, ep_in, ep_out):
self.dev = dev
self.ep_in = ep_in
self.ep_out = ep_out
def write(self, data):
"""
write data on the OUT endpoint associated to the HID interface
"""
self.ep_out.write(data)
def read(self):
return self.ep_in.read(self.ep_in.wMaxPacketSize, -1)
def close(self):
"""
close the interface
"""
usb.util.dispose_resources(self.dev)
@staticmethod
def find(vid=0x2886, pid=0x0007):
dev = usb.core.find(idVendor=vid, idProduct=pid)
if not dev:
return
config = dev.get_active_configuration()
# Iterate on all interfaces to find a HID interface
ep_in, ep_out = None, None
for interface in config:
if interface.bInterfaceClass == 0x03:
try:
if dev.is_kernel_driver_active(interface.bInterfaceNumber):
dev.detach_kernel_driver(interface.bInterfaceNumber)
except Exception as e:
print(e.message)
for ep in interface:
if ep.bEndpointAddress & 0x80:
ep_in = ep
else:
ep_out = ep
break
if ep_in and ep_out:
hid = HidDevice(dev, ep_in, ep_out)
return hid
class UsbPixelRing:
PIXELS_N = 12
MONO = 1
THINK = 3
VOLUME = 5
CUSTOM = 6
def __init__(self, hid=None, pattern=None):
self.hid = hid if hid else HidDevice.find()
if not self.hid:
print('No USB device found')
colors = [0] * 4 * self.PIXELS_N
colors[0] = 0x4
colors[1] = 0x40
colors[2] = 0x4
colors[4 + 1] = 0x8
colors[4 * 11 + 1] = 0x8
self.direction_template = colors
def set_brightness(self, brightness):
print('Not support to change brightness')
def change_pattern(self, pattern=None):
print('Not support to change pattern')
def off(self):
self.set_color(rgb=0)
def set_color(self, rgb=None, r=0, g=0, b=0):
if rgb:
self.write(0, [self.MONO, rgb & 0xFF, (rgb >> 8) & 0xFF, (rgb >> 16) & 0xFF])
else:
self.write(0, [self.MONO, b, g, r])
def think(self):
self.write(0, [self.THINK, 0, 0, 0])
wait = think
speak = think
def set_volume(self, pixels):
self.write(0, [self.VOLUME, 0, 0, pixels])
def wakeup(self, angle=0):
if angle < 0 or angle > 360:
return
position = int((angle + 15) % 360 / 30) % self.PIXELS_N
colors = self.direction_template[-position*4:] + self.direction_template[:-position*4]
self.write(0, [self.CUSTOM, 0, 0, 0])
self.write(3, colors)
return position
def listen(self, angle=0):
self.write(0, [self.MONO, 0, 0x10, 0])
def show(self, data):
self.write(0, [self.CUSTOM, 0, 0, 0])
self.write(3, data)
@staticmethod
def to_bytearray(data):
if type(data) is int:
array = bytearray([data & 0xFF])
elif type(data) is bytearray:
array = data
elif type(data) is str or type(data) is bytes:
array = bytearray(data)
elif type(data) is list:
array = bytearray(data)
else:
raise TypeError('%s is not supported' % type(data))
return array
def write(self, address, data):
data = self.to_bytearray(data)
length = len(data)
if self.hid:
packet = bytearray([address & 0xFF, (address >> 8) & 0xFF, length & 0xFF, (length >> 8) & 0xFF]) + data
self.hid.write(packet)
def close(self):
if self.hid:
self.hid.close()
def __call__(self, data):
self.write(3, data)
def find():
hid = HidDevice.find()
if hid:
pixel_ring = UsbPixelRing(hid)
return pixel_ring
if __name__ == '__main__':
import time
pixel_ring = UsbPixelRing()
while True:
try:
pixel_ring.wakeup(180)
time.sleep(3)
pixel_ring.listen()
time.sleep(3)
pixel_ring.think()
time.sleep(3)
pixel_ring.set_volume(8)
time.sleep(3)
pixel_ring.off()
time.sleep(3)
except KeyboardInterrupt:
break
pixel_ring.off()

@ -0,0 +1,122 @@
import usb.core
import usb.util
class PixelRing:
TIMEOUT = 8000
def __init__(self, dev):
self.dev = dev
def trace(self):
self.write(0)
def mono(self, color):
self.write(1, [(color >> 16) & 0xFF, (color >> 8) & 0xFF, color & 0xFF, 0])
def set_color(self, rgb=None, r=0, g=0, b=0):
if rgb:
self.mono(rgb)
else:
self.write(1, [r, g, b, 0])
def off(self):
self.mono(0)
def listen(self, direction=None):
self.write(2)
wakeup = listen
def speak(self):
self.write(3)
def think(self):
self.write(4)
wait = think
def spin(self):
self.write(5)
def show(self, data):
self.write(6, data)
customize = show
def set_brightness(self, brightness):
self.write(0x20, [brightness])
def set_color_palette(self, a, b):
self.write(0x21, [(a >> 16) & 0xFF, (a >> 8) & 0xFF, a & 0xFF, 0, (b >> 16) & 0xFF, (b >> 8) & 0xFF, b & 0xFF, 0])
def set_vad_led(self, state):
self.write(0x22, [state])
def set_volume(self, volume):
self.write(0x23, [volume])
def change_pattern(self, pattern):
if pattern == 'echo':
self.write(0x24, [1])
else:
self.write(0x24, [0])
def write(self, cmd, data=[0]):
self.dev.ctrl_transfer(
usb.util.CTRL_OUT | usb.util.CTRL_TYPE_VENDOR | usb.util.CTRL_RECIPIENT_DEVICE,
0, cmd, 0x1C, data, self.TIMEOUT)
@property
def version(self):
return self.dev.ctrl_transfer(
usb.util.CTRL_IN | usb.util.CTRL_TYPE_VENDOR | usb.util.CTRL_RECIPIENT_DEVICE,
0, 0x80 | 0x40, 0x1C, 24, self.TIMEOUT).tostring()
def close(self):
"""
close the interface
"""
usb.util.dispose_resources(self.dev)
def find(vid=0x2886, pid=0x0018):
dev = usb.core.find(idVendor=vid, idProduct=pid)
if not dev:
return
# configuration = dev.get_active_configuration()
# interface_number = None
# for interface in configuration:
# interface_number = interface.bInterfaceNumber
# if dev.is_kernel_driver_active(interface_number):
# dev.detach_kernel_driver(interface_number)
return PixelRing(dev)
if __name__ == '__main__':
import time
pixel_ring = find()
print(pixel_ring.version)
while True:
try:
pixel_ring.wakeup(180)
time.sleep(3)
pixel_ring.listen()
time.sleep(3)
pixel_ring.think()
time.sleep(3)
pixel_ring.set_volume(8)
time.sleep(3)
pixel_ring.off()
time.sleep(3)
except KeyboardInterrupt:
break
pixel_ring.off()
Loading…
Cancel
Save