C NN added
parent
9aa0c85221
commit
afaf44fc06
@ -0,0 +1,8 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
main() {
|
||||||
|
for(int i=0; i<1000000; i++){
|
||||||
|
printf("number %d\n", i);
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
Binary file not shown.
Binary file not shown.
@ -0,0 +1,121 @@
|
|||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <time.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <fcntl.h>
|
||||||
|
|
||||||
|
#define NUMPAT 4
|
||||||
|
#define NUMIN 2
|
||||||
|
#define NUMHID 2
|
||||||
|
#define NUMOUT 1
|
||||||
|
|
||||||
|
#define rando() ((double)rand()/((double)RAND_MAX+1))
|
||||||
|
|
||||||
|
main() {
|
||||||
|
int i, j, k, p, np, op, ranpat[NUMPAT+1], epoch;
|
||||||
|
int NumPattern = NUMPAT, NumInput = NUMIN, NumHidden = NUMHID, NumOutput = NUMOUT;
|
||||||
|
double Input[NUMPAT+1][NUMIN+1] = { 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1 };
|
||||||
|
double Target[NUMPAT+1][NUMOUT+1] = { 0, 0, 0, 0, 0, 1, 0, 1, 0, 0 };
|
||||||
|
double SumH[NUMPAT+1][NUMHID+1], WeightIH[NUMIN+1][NUMHID+1], Hidden[NUMPAT+1][NUMHID+1];
|
||||||
|
double SumO[NUMPAT+1][NUMOUT+1], WeightHO[NUMHID+1][NUMOUT+1], Output[NUMPAT+1][NUMOUT+1];
|
||||||
|
double DeltaO[NUMOUT+1], SumDOW[NUMHID+1], DeltaH[NUMHID+1];
|
||||||
|
double DeltaWeightIH[NUMIN+1][NUMHID+1], DeltaWeightHO[NUMHID+1][NUMOUT+1];
|
||||||
|
double Error, eta = 0.5, alpha = 0.9, smallwt = 0.5;
|
||||||
|
|
||||||
|
/*random values for the networks weights*/
|
||||||
|
for( j = 1 ; j <= NumHidden ; j++ ) { /* initialize WeightIH and DeltaWeightIH */
|
||||||
|
for( i = 0 ; i <= NumInput ; i++ ) {
|
||||||
|
DeltaWeightIH[i][j] = 0.0 ;
|
||||||
|
WeightIH[i][j] = 2.0 * ( rando() - 0.5 ) * smallwt ;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for( k = 1 ; k <= NumOutput ; k ++ ) { /* initialize WeightHO and DeltaWeightHO */
|
||||||
|
for( j = 0 ; j <= NumHidden ; j++ ) {
|
||||||
|
DeltaWeightHO[j][k] = 0.0 ;
|
||||||
|
WeightHO[j][k] = 2.0 * ( rando() - 0.5 ) * smallwt ;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
for( epoch = 0 ; epoch < 10000000 ; epoch++) { /* iterate weight updates */
|
||||||
|
for( p = 1 ; p <= NumPattern ; p++ ) { /* randomize order of individuals */
|
||||||
|
ranpat[p] = p ;
|
||||||
|
}
|
||||||
|
for( p = 1 ; p <= NumPattern ; p++) {
|
||||||
|
np = p + rando() * ( NumPattern + 1 - p ) ;
|
||||||
|
op = ranpat[p] ; ranpat[p] = ranpat[np] ; ranpat[np] = op ;
|
||||||
|
}
|
||||||
|
Error = 0.0 ;
|
||||||
|
for( np = 1 ; np <= NumPattern ; np++ ) { /* repeat for all the training patterns */
|
||||||
|
p = ranpat[np];
|
||||||
|
for( j = 1 ; j <= NumHidden ; j++ ) { /* compute hidden unit activations */
|
||||||
|
SumH[p][j] = WeightIH[0][j] ;
|
||||||
|
for( i = 1 ; i <= NumInput ; i++ ) {
|
||||||
|
SumH[p][j] += Input[p][i] * WeightIH[i][j] ;
|
||||||
|
}
|
||||||
|
/*Thats the sigmoid function*/
|
||||||
|
Hidden[p][j] = 1.0/(1.0 + exp(-SumH[p][j])) ;
|
||||||
|
}
|
||||||
|
for( k = 1 ; k <= NumOutput ; k++ ) { /* compute output unit activations and errors */
|
||||||
|
SumO[p][k] = WeightHO[0][k] ;
|
||||||
|
for( j = 1 ; j <= NumHidden ; j++ ) {
|
||||||
|
SumO[p][k] += Hidden[p][j] * WeightHO[j][k] ;
|
||||||
|
}
|
||||||
|
Output[p][k] = 1.0/(1.0 + exp(-SumO[p][k])) ; /* Sigmoidal Outputs */
|
||||||
|
/* Output[p][k] = SumO[p][k]; Linear Outputs */
|
||||||
|
Error += 0.5 * (Target[p][k] - Output[p][k]) * (Target[p][k] - Output[p][k]) ; /* SSE */
|
||||||
|
/* Error -= ( Target[p][k] * log( Output[p][k] ) + ( 1.0 - Target[p][k] ) * log( 1.0 - Output[p][k] ) ) ; Cross-Entropy Error */
|
||||||
|
DeltaO[k] = (Target[p][k] - Output[p][k]) * Output[p][k] * (1.0 - Output[p][k]) ; /* Sigmoidal Outputs, SSE */
|
||||||
|
/* DeltaO[k] = Target[p][k] - Output[p][k]; Sigmoidal Outputs, Cross-Entropy Error */
|
||||||
|
/* DeltaO[k] = Target[p][k] - Output[p][k]; Linear Outputs, SSE */
|
||||||
|
}
|
||||||
|
for( j = 1 ; j <= NumHidden ; j++ ) { /* 'back-propagate' errors to hidden layer */
|
||||||
|
SumDOW[j] = 0.0 ;
|
||||||
|
for( k = 1 ; k <= NumOutput ; k++ ) {
|
||||||
|
SumDOW[j] += WeightHO[j][k] * DeltaO[k] ;
|
||||||
|
}
|
||||||
|
DeltaH[j] = SumDOW[j] * Hidden[p][j] * (1.0 - Hidden[p][j]) ;
|
||||||
|
}
|
||||||
|
for( j = 1 ; j <= NumHidden ; j++ ) { /* update weights WeightIH */
|
||||||
|
DeltaWeightIH[0][j] = eta * DeltaH[j] + alpha * DeltaWeightIH[0][j] ;
|
||||||
|
WeightIH[0][j] += DeltaWeightIH[0][j] ;
|
||||||
|
for( i = 1 ; i <= NumInput ; i++ ) {
|
||||||
|
DeltaWeightIH[i][j] = eta * Input[p][i] * DeltaH[j] + alpha * DeltaWeightIH[i][j];
|
||||||
|
WeightIH[i][j] += DeltaWeightIH[i][j] ;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
for( k = 1 ; k <= NumOutput ; k ++ ) { /* update weights WeightHO */
|
||||||
|
DeltaWeightHO[0][k] = eta * DeltaO[k] + alpha * DeltaWeightHO[0][k] ;
|
||||||
|
WeightHO[0][k] += DeltaWeightHO[0][k] ;
|
||||||
|
for( j = 1 ; j <= NumHidden ; j++ ) {
|
||||||
|
DeltaWeightHO[j][k] = eta * Hidden[p][j] * DeltaO[k] + alpha * DeltaWeightHO[j][k] ;
|
||||||
|
WeightHO[j][k] += DeltaWeightHO[j][k] ;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if( epoch%100 == 0 ) fprintf(stdout, "\nEpoch %-5d : Error = %f", epoch, Error) ;
|
||||||
|
if( Error < 0.0004 ) break ; /* stop learning when 'near enough' */
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(stdout, "\n\nNETWORK DATA - EPOCH %d\n\nPat\t", epoch) ; /* print network outputs */
|
||||||
|
for( i = 1 ; i <= NumInput ; i++ ) {
|
||||||
|
fprintf(stdout, "Input%-4d\t", i) ;
|
||||||
|
}
|
||||||
|
for( k = 1 ; k <= NumOutput ; k++ ) {
|
||||||
|
fprintf(stdout, "Target%-4d\tOutput%-4d\t", k, k) ;
|
||||||
|
}
|
||||||
|
for( p = 1 ; p <= NumPattern ; p++ ) {
|
||||||
|
fprintf(stdout, "\n%d\t", p) ;
|
||||||
|
for( i = 1 ; i <= NumInput ; i++ ) {
|
||||||
|
fprintf(stdout, "%f\t", Input[p][i]) ;
|
||||||
|
}
|
||||||
|
for( k = 1 ; k <= NumOutput ; k++ ) {
|
||||||
|
fprintf(stdout, "%f\t%f\t", Target[p][k], Output[p][k]) ;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fprintf(stdout, "\n\nDONE\n\n") ;
|
||||||
|
return 1 ;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*******************************************************************************/
|
Loading…
Reference in New Issue