added ml experiments / projects
parent
169d99a82f
commit
5a33b132a8
@ -0,0 +1,102 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.cluster import KMeans
|
||||
from os import listdir
|
||||
import imageio
|
||||
|
||||
from PIL import Image, ImageDraw
|
||||
|
||||
def list_files(directory, extension):
|
||||
return (f for f in listdir(directory) if f.endswith('.jpg') or f.endswith('.png'))
|
||||
|
||||
def find_histogram(clt):
|
||||
"""
|
||||
create a histogram with k clusters
|
||||
:param: clt
|
||||
:return:hist
|
||||
"""
|
||||
numLabels = np.arange(0, len(np.unique(clt.labels_)) + 1)
|
||||
(hist, _) = np.histogram(clt.labels_, bins=numLabels)
|
||||
|
||||
hist = hist.astype("float")
|
||||
hist /= hist.sum()
|
||||
|
||||
return hist
|
||||
def plot_colors2(hist, centroids):
|
||||
bar = np.zeros((50, 300, 3), dtype="uint8")
|
||||
startX = 0
|
||||
|
||||
for (percent, color) in zip(hist, centroids):
|
||||
# plot the relative percentage of each cluster
|
||||
endX = startX + (percent * 300)
|
||||
cv2.rectangle(bar, (int(startX), 0), (int(endX), 50),
|
||||
color.astype("uint8").tolist(), -1)
|
||||
startX = endX
|
||||
|
||||
# return the bar chart
|
||||
return bar
|
||||
|
||||
|
||||
def generateColorImage(img_input):
|
||||
img = cv2.imread("images/"+img_input)
|
||||
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img_old = img
|
||||
|
||||
height=img.shape[0]
|
||||
width=img.shape[1]
|
||||
|
||||
img = img.reshape((img.shape[0] * img.shape[1],3)) #represent as row*column,channel number
|
||||
clt = KMeans(n_clusters=3) #cluster number
|
||||
clt.fit(img)
|
||||
|
||||
hist = find_histogram(clt)
|
||||
|
||||
#print(hist, clt.cluster_centers_)
|
||||
|
||||
# size of image
|
||||
canvas = (width, height)
|
||||
|
||||
# scale ration
|
||||
scale = 1
|
||||
thumb = canvas[0]/scale, canvas[1]/scale
|
||||
|
||||
# rectangles (width, height, left position, top position)
|
||||
#print(width*hist[0])
|
||||
frames = [(0, 0, 115, height), (width*hist[0], height, width*hist[0]+width,2), (100, 205, 120,200)]
|
||||
|
||||
# init canvas
|
||||
im = Image.new('RGB', canvas, (255, 255, 255))
|
||||
draw = ImageDraw.Draw(im)
|
||||
|
||||
draw.rectangle([0, 0, width*hist[0], height], fill=(int(clt.cluster_centers_[0][0]), int(clt.cluster_centers_[0][1]), int(clt.cluster_centers_[0][2])))
|
||||
draw.rectangle([width*hist[0], 0, width*hist[0]+width*hist[1], height], fill=(int(clt.cluster_centers_[1][0]),int(clt.cluster_centers_[1][1]),int(clt.cluster_centers_[1][2])))
|
||||
draw.rectangle([width*hist[0]+width*hist[1], 0, width*hist[0]+width*hist[1]+width*hist[2], height], fill=(int(clt.cluster_centers_[2][0]),int(clt.cluster_centers_[2][1]),int(clt.cluster_centers_[2][2])))
|
||||
|
||||
# make thumbnail
|
||||
im.thumbnail(thumb)
|
||||
|
||||
# save image
|
||||
im.save("output/"+img_input)
|
||||
|
||||
# images = []
|
||||
# images.append(imageio.imread("images/"+img_input))
|
||||
# images.append(imageio.imread("img/"+img_input))
|
||||
# imageio.mimsave('gifs/'+img_input+".gif", images)
|
||||
|
||||
|
||||
|
||||
directory = 'images'
|
||||
files = list_files(directory, "jpg")
|
||||
for f in files:
|
||||
print(f)
|
||||
generateColorImage(f)
|
||||
|
||||
|
||||
|
||||
#bar = plot_colors2(hist, clt.cluster_centers_)
|
||||
|
||||
#plt.axis("off")
|
||||
#plt.imshow(bar)
|
||||
#plt.show()
|
@ -0,0 +1,58 @@
|
||||
|
||||
# Part 3 - Making new predictions
|
||||
import numpy as np
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from keras.preprocessing import image
|
||||
from keras.models import model_from_yaml
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('images', nargs="*", help="images to classify")
|
||||
args = parser.parse_args()
|
||||
|
||||
# load YAML and create model
|
||||
yaml_file = open('model.yaml', 'r')
|
||||
loaded_model_yaml = yaml_file.read()
|
||||
yaml_file.close()
|
||||
classifier = model_from_yaml(loaded_model_yaml)
|
||||
# load weights into new model
|
||||
classifier.load_weights("model.h5")
|
||||
print("Loaded model from disk")
|
||||
|
||||
|
||||
for f in args.images:
|
||||
from keras.preprocessing import image
|
||||
test_image = image.load_img(f, target_size = (64, 64))
|
||||
test_image = image.img_to_array(test_image)
|
||||
test_image = np.expand_dims(test_image, axis = 0)
|
||||
result = classifier.predict(test_image)
|
||||
print(result)
|
||||
|
||||
|
||||
|
||||
#WHAT ARE YOUR CLASSES?
|
||||
if result[0][0] == 1:
|
||||
prediction = 'rect'
|
||||
else:
|
||||
prediction = 'circle'
|
||||
|
||||
print("PREDICTION: {}".format(prediction))
|
||||
|
||||
|
||||
#WRITE RESULT TO IMAGE
|
||||
image = Image.open(f)
|
||||
width, height = image.size
|
||||
size = (width, height+100)
|
||||
layer = Image.new('RGB', size, (255,255,255))
|
||||
layer.paste(image, (0,0))
|
||||
|
||||
draw = ImageDraw.Draw(layer)
|
||||
font = ImageFont.truetype('Roboto-Regular.ttf', size=45)
|
||||
(x, y) = (50, height+20)
|
||||
message = prediction
|
||||
color = 'rgb(0, 0, 0)' # black color
|
||||
draw.text((x, y), message, fill=color, font=font)
|
||||
|
||||
|
||||
layer.save("{}.predicted.png".format(f))
|
@ -0,0 +1,11 @@
|
||||
h5py==2.8.0
|
||||
Keras==2.2.4
|
||||
Keras-Applications==1.0.6
|
||||
Keras-Preprocessing==1.0.5
|
||||
numpy==1.15.2
|
||||
Pillow==5.3.0
|
||||
protobuf==3.6.1
|
||||
PyYAML==3.13
|
||||
scipy==1.1.0
|
||||
six==1.11.0
|
||||
tensorflow==1.0.0
|
@ -0,0 +1,78 @@
|
||||
# Convolutional Neural Network
|
||||
|
||||
# Installing Theano
|
||||
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
|
||||
|
||||
# Installing Tensorflow
|
||||
# pip install tensorflow
|
||||
|
||||
# Installing Keras
|
||||
# pip install --upgrade keras
|
||||
|
||||
# Part 1 - Building the CNN
|
||||
|
||||
# Importing the Keras libraries and packages
|
||||
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Conv2D
|
||||
from keras.layers import MaxPooling2D
|
||||
from keras.layers import Flatten
|
||||
from keras.layers import Dense
|
||||
|
||||
# Initialising the CNN
|
||||
classifier = Sequential()
|
||||
# Step 1 - Convolution
|
||||
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
|
||||
|
||||
# Step 2 - Pooling
|
||||
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||||
|
||||
# Adding a second convolutional layer
|
||||
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
|
||||
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||||
|
||||
# Step 3 - Flattening
|
||||
classifier.add(Flatten())
|
||||
|
||||
# Step 4 - Full connection
|
||||
classifier.add(Dense(units = 128, activation = 'relu'))
|
||||
classifier.add(Dense(units = 1, activation = 'sigmoid'))
|
||||
|
||||
# Compiling the CNN
|
||||
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
|
||||
|
||||
# Part 2 - Fitting the CNN to the images
|
||||
|
||||
from keras.preprocessing.image import ImageDataGenerator
|
||||
|
||||
train_datagen = ImageDataGenerator(rescale = 1./255,
|
||||
shear_range = 0.2,
|
||||
zoom_range = 0.2,
|
||||
horizontal_flip = True)
|
||||
|
||||
test_datagen = ImageDataGenerator(rescale = 1./255)
|
||||
|
||||
training_set = train_datagen.flow_from_directory('dataset/training_set',
|
||||
target_size = (64, 64),
|
||||
batch_size = 32,
|
||||
class_mode = 'binary')
|
||||
|
||||
test_set = test_datagen.flow_from_directory('dataset/test_set',
|
||||
target_size = (64, 64),
|
||||
batch_size = 32,
|
||||
class_mode = 'binary')
|
||||
|
||||
classifier.fit_generator(training_set,
|
||||
steps_per_epoch = 500,
|
||||
epochs = 1,
|
||||
validation_data = test_set,
|
||||
validation_steps = 100)
|
||||
|
||||
|
||||
# serialize model to YAML
|
||||
model_yaml = classifier.to_yaml()
|
||||
with open("model.yaml", "w") as yaml_file:
|
||||
yaml_file.write(model_yaml)
|
||||
# serialize weights to HDF5
|
||||
classifier.save_weights("model.h5")
|
||||
print("Saved model to disk")
|
@ -0,0 +1,162 @@
|
||||
class NeuralNetwork
|
||||
{
|
||||
constructor(numInputs, numOutputs, numHiddenLayers, numNeuronsPerHiddenLayer)
|
||||
{
|
||||
|
||||
this.numInputs = numInputs;
|
||||
this.numOutputs = numOutputs;
|
||||
this.numHiddenLayers = numHiddenLayers;
|
||||
this.numNeuronsPerHiddenLayer = numNeuronsPerHiddenLayer;
|
||||
|
||||
this.bias = 0.0;
|
||||
this.activationResponse = 1.0;
|
||||
this.neuronLayers = [];
|
||||
|
||||
this.createNetwork();
|
||||
}
|
||||
|
||||
createNetwork()
|
||||
{
|
||||
|
||||
//create the layers of the network
|
||||
if (this.numHiddenLayers > 0)
|
||||
{
|
||||
//create first hidden layer
|
||||
var firstHiddenLayer = new NeuronLayer(this.numNeuronsPerHiddenLayer, this.numInputs);
|
||||
this.neuronLayers.push(firstHiddenLayer);
|
||||
|
||||
for (var i=0; i<this.numHiddenLayers-1; ++i)
|
||||
{
|
||||
var newHiddenLayer = new NeuronLayer(this.numNeuronsPerHiddenLayer, this.numNeuronsPerHiddenLayer);
|
||||
this.neuronLayers.push(newHiddenLayer);
|
||||
}
|
||||
|
||||
//create output layer
|
||||
var outputLayer = new NeuronLayer(this.numOutputs, this.numNeuronsPerHiddenLayer);
|
||||
this.neuronLayers.push(outputLayer);
|
||||
}
|
||||
else
|
||||
{
|
||||
//create output layer
|
||||
var outputLayer = new NeuronLayer(this.numOutputs, this.numInputs);
|
||||
this.neuronLayers.push(outputLayer);
|
||||
}
|
||||
}
|
||||
|
||||
update(inputs)
|
||||
{
|
||||
|
||||
var outputs = [];
|
||||
|
||||
var cWeight = 0;
|
||||
|
||||
// If the number of inputs supplied is incorrect...
|
||||
if (inputs.length!=this.numInputs)
|
||||
{
|
||||
return outputs; // Return empty outputs
|
||||
}
|
||||
|
||||
// Loop through all layers
|
||||
var inputLayer = true;
|
||||
for (var i=0; i < this.numHiddenLayers + 1; ++i)
|
||||
{
|
||||
var neuronLayer = this.neuronLayers[i];
|
||||
|
||||
if (!inputLayer)
|
||||
{
|
||||
inputs = [];
|
||||
inputs = inputs.concat(outputs);
|
||||
}
|
||||
else
|
||||
{
|
||||
inputLayer = false;
|
||||
}
|
||||
|
||||
outputs = [];
|
||||
|
||||
cWeight = 0;
|
||||
|
||||
// For each neuron sum the (inputs * corresponding weights).
|
||||
// Throw the total at our sigmoid function to get the output.
|
||||
for (var j=0; j < neuronLayer.neurons.length; ++j)
|
||||
{
|
||||
var neuron = neuronLayer.neurons[j];
|
||||
|
||||
var totalInput = 0;
|
||||
|
||||
// For each weight...
|
||||
for (var k=0; k < neuron.numInputs ; ++k) // -1 ???
|
||||
{
|
||||
// Multiply it with the input.
|
||||
totalInput += neuron.weights[k] *
|
||||
inputs[cWeight];
|
||||
console.log("cweight "+cWeight);
|
||||
console.log("neuron weight "+neuron.weights[k]);
|
||||
console.log("input: "+inputs[cWeight]);
|
||||
console.log("total input "+totalInput);
|
||||
|
||||
|
||||
cWeight++;
|
||||
}
|
||||
|
||||
// Add in the bias (final weight)
|
||||
// totalInput += neuron.weights[neuron.weights.length-1] * this.bias;
|
||||
|
||||
// We can store the outputs from each layer as we generate them.
|
||||
// The combined activation is first filtered through the sigmoid function
|
||||
outputs.push(this.sigmoid(totalInput, this.activationResponse));
|
||||
|
||||
cWeight = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return outputs;
|
||||
}
|
||||
|
||||
sigmoid(totalInput, activationResponse)
|
||||
{
|
||||
return ( 1 / ( 1 + Math.exp(-totalInput / activationResponse)));
|
||||
}
|
||||
|
||||
getWeights()
|
||||
{
|
||||
var weights = [];
|
||||
|
||||
//for each layer
|
||||
for (var i=0; i<this.numHiddenLayers + 1; ++i)
|
||||
{
|
||||
|
||||
//for each neuron
|
||||
for (var j=0; j<this.neuronLayers[i].neurons.length; ++j)
|
||||
{
|
||||
//for each weight
|
||||
for (var k=0; k<this.neuronLayers[i].neurons[j].numInputs; ++k)
|
||||
{
|
||||
weights.push(this.neuronLayers[i].neurons[j].weights[k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return weights;
|
||||
}
|
||||
|
||||
setWeights(weights)
|
||||
{
|
||||
var cWeight = 0;
|
||||
|
||||
//for each layer
|
||||
for (var i=0; i<this.numHiddenLayers + 1; ++i)
|
||||
{
|
||||
|
||||
//for each neuron
|
||||
for (var j=0; j<this.neuronLayers[i].neurons.length; ++j)
|
||||
{
|
||||
//for each weight
|
||||
for (var k=0; k<this.neuronLayers[i].neurons[j].numInputs; ++k)
|
||||
{
|
||||
this.neuronLayers[i].neurons[j].weights[k] = weights[cWeight++];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,15 @@
|
||||
class Neuron
|
||||
{
|
||||
constructor(numInputs)
|
||||
{
|
||||
this.weights = [];
|
||||
this.numInputs = numInputs;
|
||||
|
||||
for (var i=0; i<numInputs+1; ++i)
|
||||
{
|
||||
var newWeight = -1 + (Math.random()*2);
|
||||
//var newWeight = 1;
|
||||
this.weights.push(newWeight);
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,14 @@
|
||||
class NeuronLayer
|
||||
{
|
||||
constructor(numNeuronsPerHiddenLayer, numInputs)
|
||||
{
|
||||
this.neurons = [];
|
||||
|
||||
for (var i = 0; i < numNeuronsPerHiddenLayer; ++i)
|
||||
{
|
||||
var newNeuron = new Neuron(numInputs);
|
||||
|
||||
this.neurons.push(newNeuron);
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,225 @@
|
||||
<html>
|
||||
<head>
|
||||
<script src="NeuralNetwork.js"></script>
|
||||
<script src="Neuron.js"></script>
|
||||
<script src="NeuronLayer.js"></script>
|
||||
|
||||
<style>
|
||||
body{
|
||||
padding:0;
|
||||
margin:0;
|
||||
overflow:hidden;
|
||||
font-family:Helvetica;
|
||||
font-size:10px;
|
||||
}
|
||||
input{
|
||||
padding:0;
|
||||
}
|
||||
p{
|
||||
padding:0;
|
||||
margin:0;
|
||||
}
|
||||
|
||||
#input{
|
||||
position:absolute;
|
||||
top:100px;
|
||||
left:10px;
|
||||
}
|
||||
#first_layer{
|
||||
position:absolute;
|
||||
top: 100px;
|
||||
left: 200px;
|
||||
}
|
||||
#second_layer{
|
||||
position:absolute;
|
||||
top: 100px;
|
||||
left: 400px;
|
||||
}
|
||||
#output{
|
||||
position:absolute;
|
||||
top: 100px;
|
||||
left: 600px;
|
||||
}
|
||||
#network_container{
|
||||
position:absolute;
|
||||
top: 100px;
|
||||
left: 600px;
|
||||
margin-left:-400px;
|
||||
margin-top:-250px;
|
||||
}
|
||||
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<canvas id="myCanvas" width="100%" height="100%"></canvas>
|
||||
<div id="network_container">
|
||||
<div id="input">
|
||||
|
||||
|
||||
<input type="range" min="0" max="100" value="1" class="i0" id="i0">
|
||||
<p id="i0_output"></p>
|
||||
<input type="range" min="0" max="100" value="10" class="i1" id="i1">
|
||||
<p id="i1_output"></p>
|
||||
</div>
|
||||
<div id = "first_layer">
|
||||
<input type="range" min="-400" max="400" value="10" class="w0" id="w0">
|
||||
<p id="w0_output"></p>
|
||||
<input type="range" min="-400" max="400" value="10" class="w1" id="w1">
|
||||
<p id="w1_output"></p><br><br>
|
||||
<input type="range" min="-400" max="400" value="10" class="w2" id="w2">
|
||||
<p id="w2_output"></p>
|
||||
<input type="range" min="-400" max="400" value="10" class="w3" id="w3">
|
||||
<p id="w3_output"></p><br><br>
|
||||
<input type="range" min="-400" max="400" value="10" class="w4" id="w4">
|
||||
<p id="w4_output"></p>
|
||||
<input type="range" min="-400" max="400" value="10" class="w5" id="w5">
|
||||
<p id="w5_output"></p>
|
||||
</div>
|
||||
<div id = "second_layer">
|
||||
<input type="range" min="-400" max="400" value="10" class="w6" id="w6">
|
||||
<p id="w6_output"></p>
|
||||
<input type="range" min="-400" max="400" value="10" class="w7" id="w7">
|
||||
<p id="w7_output"></p>
|
||||
<input type="range" min="-400" max="400" value="10" class="w8" id="w8">
|
||||
<p id="w8_output"></p><br><br>
|
||||
<input type="range" min="-400" max="400" value="10" class="w9" id="w9">
|
||||
<p id="w9_output"></p>
|
||||
<input type="range" min="-400" max="400" value="10" class="w10" id="w10">
|
||||
<p id="w10_output"></p>
|
||||
<input type="range" min="-400" max="400" value="10" class="w11" id="w11">
|
||||
<p id="w11_output"></p>
|
||||
</div>
|
||||
|
||||
<div id="output">
|
||||
<input id="clickMe" type="button" value="update network" onclick="update();" />
|
||||
<input id="random" type="button" value="random network" onclick="random();" />
|
||||
|
||||
<p id="network_output"></p>
|
||||
</div>
|
||||
</div>
|
||||
<script>
|
||||
|
||||
var numInputs = 2;
|
||||
var numOutputs = 2;
|
||||
var numHiddenLayers = 1;
|
||||
var numNeuronsPerHiddenLayer = 3;
|
||||
|
||||
var slider = [];
|
||||
var output = [];
|
||||
|
||||
var neuralNetwork = new NeuralNetwork(numInputs, numOutputs, numHiddenLayers, numNeuronsPerHiddenLayer);
|
||||
|
||||
|
||||
var input0 = document.getElementById("i0")
|
||||
var input_display0 = document.getElementById("i0_output")
|
||||
input_display0.innerHTML = input0.value/100;
|
||||
input0.oninput = function() {
|
||||
input_display0.innerHTML = this.value/100;
|
||||
}
|
||||
var input1 = document.getElementById("i1")
|
||||
var input_display1 = document.getElementById("i1_output")
|
||||
input_display1.innerHTML = input1.value/100;
|
||||
input1.oninput = function() {
|
||||
input_display1.innerHTML = this.value/100;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
//slider
|
||||
for (var i = 0; i<12; i++){
|
||||
slider.push(document.getElementById("w"+i));
|
||||
output.push(document.getElementById("w"+i+"_output"));
|
||||
output[i].innerHTML = slider[i].value/100;
|
||||
slider[i].oninput = function() {
|
||||
output[slider.indexOf(this)].innerHTML = this.value/100;
|
||||
|
||||
updateCanvas()
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
document.addEventListener('mousemove', function(e) {
|
||||
console.log("move")
|
||||
var x = e.clientX / window.innerWidth;
|
||||
var y = e.clientY / window.innerHeight;
|
||||
input0.value=x*100;
|
||||
input1.value=y*100;
|
||||
input_display0.innerHTML = x;
|
||||
input_display1.innerHTML = y;
|
||||
update([x,y])
|
||||
})
|
||||
|
||||
|
||||
//CANVAS STUFF
|
||||
var c = document.getElementById("myCanvas");
|
||||
var ctx = c.getContext("2d");
|
||||
ctx.canvas.width = window.innerWidth;
|
||||
ctx.canvas.height = window.innerHeight;
|
||||
var stepsize = 50;
|
||||
for(var x = 0; x < window.innerWidth; x = x+stepsize){
|
||||
for(var y = 0; y < window.innerHeight; y = y+stepsize){
|
||||
var outputs = neuralNetwork.update([x/window.innerWidth,y/window.innerHeight]);
|
||||
ctx.fillStyle = 'hsl(' + 360 * outputs[0] + ', 50%,'+outputs[1]*100 +'%)';
|
||||
//ctx.fillStyle= "rgb(255,20,255);"
|
||||
console.log(outputs[1]*255)
|
||||
ctx.fillRect(x,y,stepsize,stepsize);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
function updateCanvas(){
|
||||
|
||||
var stepsize = 50;
|
||||
for(var x = 0; x < window.innerWidth; x = x+stepsize){
|
||||
for(var y = 0; y < window.innerHeight; y = y+stepsize){
|
||||
var outputs = neuralNetwork.update([x/window.innerWidth,y/window.innerHeight]);
|
||||
ctx.fillStyle = 'hsl(' + 360 * outputs[0] + ', 90%,'+outputs[1]*100+'%)';
|
||||
//ctx.fillStyle= "rgb(255,20,255);"
|
||||
console.log(outputs[1]*255)
|
||||
ctx.fillRect(x,y,stepsize,stepsize);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
function update(inputs){
|
||||
|
||||
|
||||
var weights = neuralNetwork.getWeights();
|
||||
var newWeights = [];
|
||||
for (var i=0; i < weights.length; i++) {
|
||||
newWeights.push(slider[i].value/100);
|
||||
//newWeights.push(1);
|
||||
}
|
||||
neuralNetwork.setWeights(newWeights);
|
||||
|
||||
|
||||
//var inputs = [input0.value/100, input1.value/100];
|
||||
var outputs = neuralNetwork.update(inputs);
|
||||
// console.log(neuralNetwork.getWeights());
|
||||
var output_display = document.getElementById("network_output")
|
||||
output_display.innerHTML = "<br> "+outputs[0] + "<br><br> "+outputs [1];
|
||||
|
||||
document.getElementById('network_container').style.left=outputs[0]*window.innerWidth;
|
||||
document.getElementById('network_container').style.top=outputs[1]*window.innerHeight;
|
||||
|
||||
}
|
||||
|
||||
random()
|
||||
function random(inputs){
|
||||
|
||||
for (var i = 0; i<slider.length; i++){
|
||||
|
||||
slider[i].value = Math.random()*800-400;
|
||||
output[slider.indexOf(slider[i])].innerHTML = slider[i].value/100;
|
||||
}
|
||||
updateCanvas();
|
||||
}
|
||||
|
||||
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
@ -0,0 +1,198 @@
|
||||
|
||||
<html>
|
||||
<head>
|
||||
<title>neural network art</title>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=320, initial-scale=1.0, maximum-scale=1.0, user-scalable=0"/>
|
||||
<meta name="apple-mobile-web-app-capable" content="yes" />
|
||||
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
||||
<meta name="mobile-web-app-capable" content="yes">
|
||||
<meta name="description" content="ōtoro.net">
|
||||
<meta name="author" content="hardmaru">
|
||||
|
||||
|
||||
<!-- extra styles -->
|
||||
<style>
|
||||
head {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
body {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
}
|
||||
p {
|
||||
padding: 10px;
|
||||
font-family: Courier, "Helvetica Neue",Helvetica,Arial,sans-serif;
|
||||
font-weight: 100;
|
||||
font-size: 0.6em;
|
||||
}
|
||||
textarea {
|
||||
padding: 5;
|
||||
font-family: Courier, "Helvetica Neue",Helvetica,Arial,sans-serif;
|
||||
font-weight: 100;
|
||||
font-size: 0.5em;
|
||||
}
|
||||
</style>
|
||||
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<div id="p5Container">
|
||||
</div>
|
||||
|
||||
<!-- jQuery -->
|
||||
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.8.3/jquery.min.js"></script>
|
||||
|
||||
<script src="lib/p5.min.js"></script>
|
||||
|
||||
<script src="lib/recurrent.js"></script>
|
||||
|
||||
<script>
|
||||
// neural network random art generator
|
||||
|
||||
// settings
|
||||
|
||||
// actual size of generated image
|
||||
var sizeh = 300;
|
||||
var sizew = 300;
|
||||
var sizeImage = sizeh*sizew;
|
||||
|
||||
var nH, nW, nImage;
|
||||
var mask;
|
||||
|
||||
// settings of nnet:
|
||||
var networkSize = 8;
|
||||
var nHidden = 10;
|
||||
var nOut = 3; // r, g, b layers
|
||||
|
||||
// support variables:
|
||||
var img;
|
||||
var img2;
|
||||
var G = new R.Graph(false);
|
||||
|
||||
var initModel = function() {
|
||||
"use strict";
|
||||
|
||||
var model = [];
|
||||
var i;
|
||||
|
||||
var randomSize = 1.0;
|
||||
|
||||
// define the model below:
|
||||
model.w_in = R.RandMat(networkSize, 3, 0, randomSize); // x, y, and bias
|
||||
|
||||
// model['w_0'] = R.RandMat(networkSize, networkSize, 0, randomSize);
|
||||
|
||||
for (i = 0; i < nHidden; i++) {
|
||||
model['w_'+i] = R.RandMat(networkSize, networkSize, 0, randomSize);
|
||||
}
|
||||
model.w_out = R.RandMat(nOut, networkSize, 0, randomSize); // output layer
|
||||
|
||||
console.log(model)
|
||||
|
||||
return model;
|
||||
};
|
||||
|
||||
|
||||
var forwardNetwork = function(G, model, x_, y_) {
|
||||
// x_, y_ is a normal javascript float, will be converted to a mat object below
|
||||
// G is a graph to amend ops to
|
||||
var x = new R.Mat(3, 1); // input
|
||||
var i;
|
||||
x.set(0, 0, x_);
|
||||
x.set(1, 0, y_);
|
||||
x.set(2, 0, 1.0); // bias.
|
||||
var out;
|
||||
out = G.tanh(G.mul(model.w_in, x));
|
||||
for (i = 0; i < nHidden; i++) {
|
||||
out = G.tanh(G.mul(model['w_'+i], out));
|
||||
}
|
||||
out = G.sigmoid(G.mul(model.w_out, out));
|
||||
console.log(out)
|
||||
return out;
|
||||
};
|
||||
|
||||
function getColorAt(model, x, y) {
|
||||
// function that returns a color given coordintes (x, y)
|
||||
// (x, y) are scaled to -0.5 -> 0.5 for image recognition later
|
||||
// but it can be behond the +/- 0.5 for generation above and beyond
|
||||
// recognition limits
|
||||
var r, g, b;
|
||||
var out = forwardNetwork(G, model, x, y);
|
||||
|
||||
r = out.w[0]*255.0;
|
||||
g = out.w[1]*255.0;
|
||||
b = out.w[2]*255.0;
|
||||
|
||||
return color(r, g, b);
|
||||
}
|
||||
|
||||
function genImage(img, model) {
|
||||
var i, j, m, n;
|
||||
img.loadPixels();
|
||||
for (i = 0, m=img.width; i < m; i++) {
|
||||
for (j = 0, n=img.height; j < n; j++) {
|
||||
img.set(i, j, getColorAt(model, i/sizeh-0.5,j/sizew-0.5));
|
||||
}
|
||||
}
|
||||
img.updatePixels();
|
||||
}
|
||||
|
||||
function setup() {
|
||||
|
||||
"use strict";
|
||||
var myCanvas;
|
||||
|
||||
myCanvas = createCanvas(windowWidth,windowHeight);
|
||||
|
||||
myCanvas.parent('p5Container');
|
||||
|
||||
nW = Math.max(Math.floor(windowWidth/sizew), 1);
|
||||
nH = Math.max(Math.floor(windowHeight/sizeh), 1);
|
||||
nImage = nH*nW;
|
||||
mask = R.zeros(nImage);
|
||||
|
||||
//img.resize(320*1.0, 320*1.0);
|
||||
//img.save('genart.png','png');
|
||||
//noLoop();
|
||||
img = createImage(sizeh, sizew);
|
||||
|
||||
frameRate(30);
|
||||
}
|
||||
|
||||
function getRandomLocation() {
|
||||
var i, result=0, r;
|
||||
for (i=0;i<nImage;i++) {
|
||||
result += mask[i];
|
||||
}
|
||||
if (result === nImage) {
|
||||
mask = R.zeros(nImage);
|
||||
}
|
||||
do {
|
||||
r = R.randi(0, nImage);
|
||||
} while (mask[r] !== 0);
|
||||
mask[r] = 1;
|
||||
return r;
|
||||
}
|
||||
|
||||
function displayImage(n) {
|
||||
var row = Math.floor(n/nW);
|
||||
var col = n % nW;
|
||||
image(img, col*sizew, row*sizeh);
|
||||
}
|
||||
|
||||
function draw() {
|
||||
|
||||
model = initModel();
|
||||
genImage(img, model);
|
||||
displayImage(getRandomLocation());
|
||||
|
||||
}
|
||||
|
||||
|
||||
</script>
|
||||
|
||||
|
||||
</body>
|
||||
</html>
|
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue