a selection of the codes I have been working on for the special issue

master
Max Lehmann 5 years ago
parent 571e4e1eba
commit 5eec8374a9

@ -0,0 +1,56 @@
int A;
int B;
int C;
bool BA;
bool BB;
bool BC;
void setup() {
Serial.begin(9600);
}
void loop() {
A = analogRead (A1);
Serial.print ("A=");
Serial.println (A);
B = analogRead (A2);
Serial.print ("B=");
Serial.println (B);
C = analogRead (A3);
Serial.print ("C=");
Serial.println (C);
if (A>100 && !BA) {
tone(9, 200);
BA = true;
}
else if (A<100 && BA){
noTone(9);
BA = false;
}
if (B>100 && !BB) {
tone(9, 400);
BB = true;
}
else if (B<100 && BB){
noTone(9);
BB = false;
}
if (C>100 && !BC) {
tone(9, 600);
BC = true;
}
else if (C<100 && BC){
noTone(9);
BC = false;
}
}

@ -0,0 +1,194 @@
#include <MozziGuts.h>
#include <Oscil.h>
#include <tables/saw256_int8.h>
#include <Adafruit_ADS1015.h>
#include <Wire.h>
//#include <mozzi_fixmath.h>
//#include <utility/twi_nonblock.h>
#define CONTROL_RATE 128 // powers of 2 please
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_1(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_2(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_3(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_4(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_5(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_6(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_7(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_8(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_9(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_10(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_11(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_12(SAW256_DATA);
//multiplex adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
int count= 0;
int TH;
int16_t adc0a, adc1a, adc2a, adc3a, adc0b, adc1b, adc2b, adc3b, adc0c, adc1c, adc2c, adc3c, adc0d, adc1d, adc2d, adc3d;
boolean note1 = false;
boolean note2 = false;
boolean note3 = false;
boolean codeswitch = false;
void setup(){
//set the gain for multiplexed ins
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
//start the multiplexing
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
startMozzi(CONTROL_RATE);
//set tone frequency and phase
tone_1.setFreq(165);
tone_1.setPhase(0);
tone_2.setFreq(196);
tone_2.setPhase(30);
tone_3.setFreq(220);
tone_3.setPhase(60);
tone_4.setFreq(262);
tone_4.setPhase(90);
tone_5.setFreq(330);
tone_5.setPhase(120);
tone_6.setFreq(392);
tone_6.setPhase(150);
tone_7.setFreq(440);
tone_7.setPhase(180);
tone_8.setFreq(523);
tone_8.setPhase(210);
tone_9.setFreq(659);
tone_9.setPhase(240);
tone_10.setFreq(784);
tone_10.setPhase(270);
tone_11.setFreq(880);
tone_11.setPhase(300);
tone_12.setFreq(1047);
tone_12.setPhase(330);
//calibrate (set treshold)
TH = adsb.readADC_SingleEnded(3);
}
void updateControl(){
//log number of notes playing
if (adc0a < TH) {
count++;
}
if (adc1a < TH) {
count++;
}
if (adc2a < TH) {
count++;
}
if (adc3a < TH) {
count++;
}
if (adc0b < TH) {
count++;
}
if (adc1b < TH) {
count++;
}
if (adc2b < TH) {
count++;
}
if (adc3b < TH) {
count++;
}
if (adc0c < TH) {
count++;
}
if (adc1c < TH) {
count++;
}
if (adc2c < TH) {
count++;
}
if (adc3c < TH) {
count++;
}
}
int updateAudio(){
int result = 0;
//Play notes and mix down (according to notes playing
if (adc0a < TH) {
result += tone_1.next() * (1/count);
}
if (adc1a < TH) {
result += tone_2.next() * (1/count);
}
if (adc2a < TH) {
result += tone_3.next() * (1/count);
}
if (adc3a < TH) {
result += tone_4.next() * (1/count);
}
if (adc0b < TH) {
result += tone_5.next() * (1/count);
}
if (adc1b < TH) {
result += tone_6.next() * (1/count);
}
if (adc2b < TH) {
result += tone_7.next() * (1/count);
}
if (adc3b < TH) {
result += tone_8.next() * (1/count);
}
if (adc0c < TH) {
result += tone_9.next() * (1/count);
}
if (adc1c < TH) {
result += tone_10.next() * (1/count);
}
if (adc2c < TH) {
result += tone_11.next() * (1/count);
}
if (adc3c < TH) {
result += tone_12.next() * (1/count);
}
return result;
}
void loop(){
//Messure LDR multiplex inputs
adc0a = adsa.readADC_SingleEnded(0);
adc1a = adsa.readADC_SingleEnded(1);
adc2a = adsa.readADC_SingleEnded(2);
adc3a = adsa.readADC_SingleEnded(3);
adc0b = adsb.readADC_SingleEnded(0);
adc1b = adsb.readADC_SingleEnded(1);
adc2b = adsb.readADC_SingleEnded(2);
adc3b = adsb.readADC_SingleEnded(3);
adc0c = adsc.readADC_SingleEnded(0);
adc1c = adsc.readADC_SingleEnded(1);
adc2c = adsc.readADC_SingleEnded(2);
adc3c = adsc.readADC_SingleEnded(3);
adc0d = adsd.readADC_SingleEnded(0);
adc1d = adsd.readADC_SingleEnded(1);
adc2d = adsd.readADC_SingleEnded(2);
adc3d = adsd.readADC_SingleEnded(3);
audioHook();
}

@ -0,0 +1,504 @@
#include <SensorToButton.h>
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
//note values
const char note1[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note5[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note6[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note7[] PROGMEM = ":d=128,b=300:f+"; //plays f5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:b+"; //plays b5
//instruments
MusicWithoutDelay myI(note1);
MusicWithoutDelay myIn(note2);
MusicWithoutDelay myIns(note3);
MusicWithoutDelay myInst(note4);
MusicWithoutDelay myInstr(note5);
MusicWithoutDelay myInstru(note6);
MusicWithoutDelay myInstrum(note7);
MusicWithoutDelay myInstrume(note8);
MusicWithoutDelay myInstrumen(note9);
MusicWithoutDelay myInstrument(note10);
int count;
//int vol;
//int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9;
bool CV;
//bool BA;
//bool BB;
//bool BC;
//bool BD;
//bool BE;
//bool BF;
//bool BG;
//bool BH;
//bool BI;
//bool BJ;
SensorToButton button0(TH0, pressUp, 50);
SensorToButton button1(TH1, pressUp, 50);
SensorToButton button2(TH2, pressUp, 50);
SensorToButton button3(TH3, pressUp, 50);
SensorToButton button4(TH4, pressUp, 50);
SensorToButton button5(TH5, pressUp, 50);
SensorToButton button6(TH6, pressUp, 50);
SensorToButton button7(TH7, pressUp, 50);
SensorToButton button8(TH8, pressUp, 50);
SensorToButton button9(TH9, pressUp, 50);
void setup() {
Serial.begin(9600);
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (analogRead(A0)+20);
TH1 = (analogRead(A1)+20);
TH2 = (analogRead(A2)+20);
TH3 = (analogRead(A3)+20);
TH4 = (analogRead(A4)+20);
TH5 = (analogRead(A5)+20);
TH6 = (analogRead(A6)+20);
TH7 = (analogRead(A7)+20);
TH8 = (analogRead(A8)+20);
TH9 = (analogRead(A9)+20);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
myI.begin(CHA, SINE, ENVELOPE0, 0);
myIn.begin(SINE, ENVELOPE0, 0);
myIns.begin(SINE, ENVELOPE0, 0);
myInst.begin(SINE, ENVELOPE0, 0);
myInstr.begin(SINE, ENVELOPE0, 0);
myInstru.begin(SINE, ENVELOPE0, 0);
myInstrum.begin(SINE, ENVELOPE0, 0);
myInstrume.begin(SINE, ENVELOPE0, 0);
myInstrumen.begin(SINE, ENVELOPE0, 0);
myInstrument.begin(SINE, ENVELOPE0, 0);
myI.pause(true);
myIn.pause(true);
myIns.pause(true);
myInst.pause(true);
myInstr.pause(true);
myInstru.pause(true);
myInstrum.pause(true);
myInstrume.pause(true);
myInstrumen.pause(true);
myInstrument.pause(true);
Serial.println("go!");
}
void loop() {
CV = digitalRead(22);
count = 0;
button0.read (A0);
button1.read (A1);
button2.read (A2);
button3.read (A3);
button4.read (A4);
button5.read (A5);
button6.read (A6);
button7.read (A7);
button8.read (A8);
button9.read (A9);
myI.update();
myIn.update();
myIns.update();
myInst.update();
myInstr.update();
myInstru.update();
myInstrum.update();
myInstrume.update();
myInstrumen.update();
myInstrument.update();
//Messure LDR inputs
// VA0 = analogRead(A0);
// VA1 = analogRead(A1);
// VA2 = analogRead(A2);
// VA3 = analogRead(A3);
//
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
// VA4 = analogRead(A4);
// VA5 = analogRead(A5);
// VA6 = analogRead(A6);
// VA7 = analogRead(A7);
//
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
// VA8 = analogRead(A8);
// VA9 = analogRead(A9);
//
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.println(" ");
if (button0.isPressed()) {
count++;
}
if (button1.isPressed()) {
count++;
}
if (button2.isPressed()) {
count++;
}
if (button3.isPressed()) {
count++;
}
if (button4.isPressed()) {
count++;
}
if (button5.isPressed()) {
count++;
}
if (button6.isPressed()) {
count++;
}
if (button7.isPressed()) {
count++;
}
if (button8.isPressed()) {
count++;
}
if (button9.isPressed()) {
count++;
}
Serial.print("Intruments playing = ");
Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (button0.isPressed()) {
//vol = 100/count + 25;
myI.play(true);
// myI.setVolume(vol);
VOL0 = constrain(map(analogRead(A0), TH0, 500, 30, 127), 30, 127);
//myI.setMod(VOL0);
myI.setVolume(VOL0);
// BA == true;
Serial.print("Tone1 active at vol:");
Serial.println(VOL0);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(23, HIGH);
}
else if(!CV) {
digitalWrite(23, LOW);
}
}
if(button0.wasReleased()){
myI.pause (true);
// BA == false;
//Kill ControlVoltage
digitalWrite(23, LOW);
}
if (button1.isPressed()) {
// vol = 100/count + 25;
myIn.play(true);
// myIn.setVolume(vol);
VOL1 = constrain(map(analogRead(A1), TH1, 500, 30, 127), 30, 127);
//myIn.setMod(VOL1);
myIn.setVolume(VOL1);
// BB == true;
Serial.print("Tone2 active at vol:");
Serial.println(VOL1);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(25, HIGH);
}
else if(!CV) {
digitalWrite(25, LOW);
}
}
if(button1.wasReleased()){
myIn.pause (true);
// BB == false;
//Kill ControlVoltage
digitalWrite(25, LOW);
}
if (button2.isPressed()) {
// vol = 100/count + 25;
myIns.play(true);
// myIns.setVolume(vol);
VOL2 = constrain(map(analogRead(A2), TH2, 500, 30, 127), 30, 127);
//myIns.setMod(VOL2);
myIns.setVolume(VOL2);
// BC == true;
Serial.print("Tone3 active at vol:");
Serial.println(VOL2);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(27, HIGH);
}
else if(!CV) {
digitalWrite(27, LOW);
}
}
if(button2.wasReleased()){
myIns.pause (true);
// BC == false;
//Kill ControlVoltage
digitalWrite(27, LOW);
}
if (button3.isPressed()) {
// vol = 100/count + 25;
myInst.play(true);
// myInst.setVolume(vol);
VOL3 = constrain(map(analogRead(A3), TH3, 500, 30, 127), 30, 127);
//myInst.setMod(VOL3);
myInst.setVolume(VOL3);
// BD == true;
Serial.print("Tone4 active at vol:");
Serial.println(VOL3);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(29, HIGH);
}
else if(!CV) {
digitalWrite(29, LOW);
}
}
if(button3.wasReleased()){
myInst.pause (true);
// BD == false;
//Kill ControlVoltage
digitalWrite(29, LOW);
}
if (button4.isPressed()) {
// vol = 100/count + 25;
myInstr.play(true);
// myInstr.setVolume(vol);
VOL4 = constrain(map(analogRead(A4), TH4, 500, 30, 127), 30, 127);
//myInstr.setMod(VOL4);
myInstr.setVolume(VOL4);
// BE == true;
Serial.print("Tone5 active at vol:");
Serial.println(VOL4);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(31, HIGH);
}
else if(!CV) {
digitalWrite(31, LOW);
}
}
if(button4.wasReleased()){
myInstr.pause (true);
// BE == false;
//Kill ControlVoltage
digitalWrite(31, LOW);
}
if (button5.isPressed()) {
// vol = 100/count + 25;
myInstru.play(true);
// myInstru.setVolume(vol);
VOL5 = constrain(map(analogRead(A5), TH5, 500, 30, 127), 30, 127);
//myInstru.setMod(VOL5);
myInstru.setVolume(VOL5);
// BF == true;
Serial.print("Tone6 active at vol:");
Serial.println(VOL5);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(33, HIGH);
}
else if(!CV) {
digitalWrite(33, LOW);
}
}
if(button5.wasReleased()){
myInstru.pause (true);
// BF == false;
//Kill ControlVoltage
digitalWrite(33, LOW);
}
if (button6.isPressed()) {
// vol = 100/count + 25;
myInstrum.play(true);
// myInstrum.setVolume(vol);
VOL6 = constrain(map(analogRead(A6), TH6, 500, 30, 127),30, 127);
//myInstrum.setMod(VOL6);
myInstrum.setVolume(VOL6);
// BG == true;
Serial.print("Tone7 active at vol:");
Serial.println(VOL6);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(35, HIGH);
}
else if(!CV) {
digitalWrite(35, LOW);
}
}
if(button6.wasReleased()){
myInstrum.pause (true);
// BG == false;
//Kill ControlVoltage
digitalWrite(35, LOW);
}
if (button7.isPressed()) {
// vol = 100/count + 25;
myInstrume.play(true);
// myInstrume.setVolume(vol);
VOL7 = constrain(map(analogRead(A7), TH7, 500, 30, 127), 30, 127);
//myInstrume.setMod(VOL7);
myInstrume.setVolume(VOL7);
// BH == true;
Serial.print("Tone8 active at vol:");
Serial.println(VOL7);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(37, HIGH);
}
else if(!CV) {
digitalWrite(37, LOW);
}
}
if(button7.wasReleased()){
myInstrume.pause (true);
// BH == false;
//Kill ControlVoltage
digitalWrite(37, LOW);
}
if (button8.isPressed()) {
// vol = 100/count + 25;
myInstrumen.play(true);
// myInstrumen.setVolume(vol);
VOL8 = constrain(map(analogRead(A8), TH8, 500, 30, 127), 30, 127);
//myInstrumen.setMod(VOL8);
myInstrumen.setVolume(VOL8);
// BI == true;
Serial.print("Tone9 active at vol:");
Serial.println(VOL8);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(39, HIGH);
}
else if(!CV) {
digitalWrite(39, LOW);
}
}
if(button8.wasReleased()){
myInstrumen.pause (true);
// BI == false;
//Kill ControlVoltage
digitalWrite(39, LOW);
}
if (button9.isPressed()) {
// vol = 100/count + 25;
myInstrument.play(true);
// myInstrument.setVolume(vol);
VOL9 = constrain(map(analogRead(A9), TH9, 500, 30, 127), 30, 127);
//myInstrument.setMod(VOL9);
myInstrument.setVolume(VOL9);
// BJ == true;
Serial.print("Tone10 active at vol:");
Serial.println(VOL9);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(41, HIGH);
}
else if(!CV) {
digitalWrite(41, LOW);
}
}
if(button9.wasReleased()){
myInstrument.pause (true);
// BJ == false;
//Kill ControlVoltage
digitalWrite(41, LOW);
}
}

@ -0,0 +1,571 @@
#include <SensorToButton.h>
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
//note values
const char note1[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note5[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note6[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note7[] PROGMEM = ":d=128,b=300:f+"; //plays f5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:b+"; //plays b5
//instruments
MusicWithoutDelay myI(note1);
MusicWithoutDelay myIn(note2);
MusicWithoutDelay myIns(note3);
MusicWithoutDelay myInst(note4);
MusicWithoutDelay myInstr(note5);
MusicWithoutDelay myInstru(note6);
MusicWithoutDelay myInstrum(note7);
MusicWithoutDelay myInstrume(note8);
MusicWithoutDelay myInstrumen(note9);
MusicWithoutDelay myInstrument(note10);
int count;
//int vol;
//int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9;
bool CV;
bool ZER;
bool ONE;
bool TWO;
bool THR;
bool FOU;
bool FIV;
bool SIX;
bool SEV;
bool EIG;
bool NIN;
SensorToButton button0(TH0, pressUp, 50);
SensorToButton button1(TH1, pressUp, 50);
SensorToButton button2(TH2, pressUp, 50);
SensorToButton button3(TH3, pressUp, 50);
SensorToButton button4(TH4, pressUp, 50);
SensorToButton button5(TH5, pressUp, 50);
SensorToButton button6(TH6, pressUp, 50);
SensorToButton button7(TH7, pressUp, 50);
SensorToButton button8(TH8, pressUp, 50);
SensorToButton button9(TH9, pressUp, 50);
void setup() {
Serial.begin(9600);
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (analogRead(A0) + 20);
TH1 = (analogRead(A1) + 20);
TH2 = (analogRead(A2) + 20);
TH3 = (analogRead(A3) + 20);
TH4 = (analogRead(A4) + 20);
TH5 = (analogRead(A5) + 20);
TH6 = (analogRead(A6) + 20);
TH7 = (analogRead(A7) + 20);
TH8 = (analogRead(A8) + 20);
TH9 = (analogRead(A9) + 20);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
myI.begin(CHA, SINE, ENVELOPE0, 0);
myIn.begin(SINE, ENVELOPE0, 0);
myIns.begin(SINE, ENVELOPE0, 0);
myInst.begin(SINE, ENVELOPE0, 0);
myInstr.begin(SINE, ENVELOPE0, 0);
myInstru.begin(SINE, ENVELOPE0, 0);
myInstrum.begin(SINE, ENVELOPE0, 0);
myInstrume.begin(SINE, ENVELOPE0, 0);
myInstrumen.begin(SINE, ENVELOPE0, 0);
myInstrument.begin(SINE, ENVELOPE0, 0);
myI.pause(true);
myIn.pause(true);
myIns.pause(true);
myInst.pause(true);
myInstr.pause(true);
myInstru.pause(true);
myInstrum.pause(true);
myInstrume.pause(true);
myInstrumen.pause(true);
myInstrument.pause(true);
Serial.println("go!");
}
void loop() {
CV = digitalRead(22);
count = 0;
button0.read (A0);
button1.read (A1);
button2.read (A2);
button3.read (A3);
button4.read (A4);
button5.read (A5);
button6.read (A6);
button7.read (A7);
button8.read (A8);
button9.read (A9);
myI.update();
myIn.update();
myIns.update();
myInst.update();
myInstr.update();
myInstru.update();
myInstrum.update();
myInstrume.update();
myInstrumen.update();
myInstrument.update();
//Messure LDR inputs
// VA0 = analogRead(A0);
// VA1 = analogRead(A1);
// VA2 = analogRead(A2);
// VA3 = analogRead(A3);
//
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
// VA4 = analogRead(A4);
// VA5 = analogRead(A5);
// VA6 = analogRead(A6);
// VA7 = analogRead(A7);
//
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
// VA8 = analogRead(A8);
// VA9 = analogRead(A9);
//
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.println(" ");
if (button0.isPressed()) {
count++;
ZER == true;
}
else {
ZER == false;
}
if (button1.isPressed()) {
count++;
ONE == true;
}
else {
ONE == false;
}
if (button2.isPressed()) {
count++;
TWO == true;
}
else {
TWO == false;
}
if (button3.isPressed()) {
count++;
THR == true;
}
else {
THR == false;
}
}
if (button4.isPressed()) {
count++;
FOU == true;
}
else {
FOU == false;
}
}
if (button5.isPressed()) {
count++;
FIV == true;
}
else {
FIV == false;
}
}
if (button6.isPressed()) {
count++;
SIX == true;
}
else {
SIX == false;
}
}
if (button7.isPressed()) {
count++;
SEV == true;
}
else {
SEV == false;
}
}
if (button8.isPressed()) {
count++;
EIG == true;
}
else {
EIG == false;
}
}
if (button9.isPressed()) {
count++;
NIN == true;
}
else {
NIN == false;
}
}
Serial.print("Intruments playing = ");
Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
//vol = 100/count + 25;
myI.play(true);
// myI.setVolume(vol);
VOL0 = constrain(map(analogRead(A0), TH0, 500, 30, 127), 30, 127);
//myI.setMod(VOL0);
myI.setVolume(VOL0);
// BA == true;
Serial.print("Tone0 active at vol:");
Serial.println(VOL0);
Serial.println(analogRead(A0));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(23, HIGH);
}
else if (!CV) {
digitalWrite(23, LOW);
}
}
if (!ZER) {
myI.pause (true);
// BA == false;
//Kill ControlVoltage
digitalWrite(23, LOW);
}
if (button1.isPressed()) {
// vol = 100/count + 25;
myIn.play(true);
// myIn.setVolume(vol);
VOL1 = constrain(map(analogRead(A1), TH1, 500, 30, 127), 30, 127);
//myIn.setMod(VOL1);
myIn.setVolume(VOL1);
// BB == true;
Serial.print("Tone1 active at vol:");
Serial.println(VOL1);
Serial.println(analogRead(A1));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(25, HIGH);
}
else if (!CV) {
digitalWrite(25, LOW);
}
}
if (button1.wasReleased()) {
myIn.pause (true);
// BB == false;
//Kill ControlVoltage
digitalWrite(25, LOW);
}
if (button2.isPressed()) {
// vol = 100/count + 25;
myIns.play(true);
// myIns.setVolume(vol);
VOL2 = constrain(map(analogRead(A2), TH2, 500, 30, 127), 30, 127);
//myIns.setMod(VOL2);
myIns.setVolume(VOL2);
// BC == true;
Serial.print("Tone2 active at vol:");
Serial.println(VOL2);
Serial.println(analogRead(A2));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(27, HIGH);
}
else if (!CV) {
digitalWrite(27, LOW);
}
}
if (button2.wasReleased()) {
myIns.pause (true);
// BC == false;
//Kill ControlVoltage
digitalWrite(27, LOW);
}
if (button3.isPressed()) {
// vol = 100/count + 25;
myInst.play(true);
// myInst.setVolume(vol);
VOL3 = constrain(map(analogRead(A3), TH3, 500, 30, 127), 30, 127);
//myInst.setMod(VOL3);
myInst.setVolume(VOL3);
// BD == true;
Serial.print("Tone3 active at vol:");
Serial.println(VOL3);
Serial.println(analogRead(A3));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(29, HIGH);
}
else if (!CV) {
digitalWrite(29, LOW);
}
}
if (button3.wasReleased()) {
myInst.pause (true);
// BD == false;
//Kill ControlVoltage
digitalWrite(29, LOW);
}
if (button4.isPressed()) {
// vol = 100/count + 25;
myInstr.play(true);
// myInstr.setVolume(vol);
VOL4 = constrain(map(analogRead(A4), TH4, 500, 30, 127), 30, 127);
//myInstr.setMod(VOL4);
myInstr.setVolume(VOL4);
// BE == true;
Serial.print("Tone4 active at vol:");
Serial.println(VOL4);
Serial.println(analogRead(A4));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(31, HIGH);
}
else if (!CV) {
digitalWrite(31, LOW);
}
}
if (button4.wasReleased()) {
myInstr.pause (true);
// BE == false;
//Kill ControlVoltage
digitalWrite(31, LOW);
}
if (button5.isPressed()) {
// vol = 100/count + 25;
myInstru.play(true);
// myInstru.setVolume(vol);
VOL5 = constrain(map(analogRead(A5), TH5, 500, 30, 127), 30, 127);
//myInstru.setMod(VOL5);
myInstru.setVolume(VOL5);
// BF == true;
Serial.print("Tone5 active at vol:");
Serial.println(VOL5);
Serial.println(analogRead(A5));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(33, HIGH);
}
else if (!CV) {
digitalWrite(33, LOW);
}
}
if (button5.wasReleased()) {
myInstru.pause (true);
// BF == false;
//Kill ControlVoltage
digitalWrite(33, LOW);
}
if (button6.isPressed()) {
// vol = 100/count + 25;
myInstrum.play(true);
// myInstrum.setVolume(vol);
VOL6 = constrain(map(analogRead(A6), TH6, 500, 30, 127), 30, 127);
//myInstrum.setMod(VOL6);
myInstrum.setVolume(VOL6);
// BG == true;
Serial.print("Tone6 active at vol:");
Serial.println(VOL6);
Serial.println(analogRead(A6));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(35, HIGH);
}
else if (!CV) {
digitalWrite(35, LOW);
}
}
if (button6.wasReleased()) {
myInstrum.pause (true);
// BG == false;
//Kill ControlVoltage
digitalWrite(35, LOW);
}
if (button7.isPressed()) {
// vol = 100/count + 25;
myInstrume.play(true);
// myInstrume.setVolume(vol);
VOL7 = constrain(map(analogRead(A7), TH7, 500, 30, 127), 30, 127);
//myInstrume.setMod(VOL7);
myInstrume.setVolume(VOL7);
// BH == true;
Serial.print("Tone7 active at vol:");
Serial.println(VOL7);
Serial.println(analogRead(A7));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(37, HIGH);
}
else if (!CV) {
digitalWrite(37, LOW);
}
}
if (button7.wasReleased()) {
myInstrume.pause (true);
// BH == false;
//Kill ControlVoltage
digitalWrite(37, LOW);
}
if (button8.isPressed()) {
// vol = 100/count + 25;
myInstrumen.play(true);
// myInstrumen.setVolume(vol);
VOL8 = constrain(map(analogRead(A8), TH8, 500, 30, 127), 30, 127);
//myInstrumen.setMod(VOL8);
myInstrumen.setVolume(VOL8);
// BI == true;
Serial.print("Tone8 active at vol:");
Serial.println(VOL8);
Serial.println(analogRead(A8));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(39, HIGH);
}
else if (!CV) {
digitalWrite(39, LOW);
}
}
if (button8.wasReleased()) {
myInstrumen.pause (true);
// BI == false;
//Kill ControlVoltage
digitalWrite(39, LOW);
}
if (button9.isPressed()) {
// vol = 100/count + 25;
myInstrument.play(true);
// myInstrument.setVolume(vol);
VOL9 = constrain(map(analogRead(A9), TH9, 500, 30, 127), 30, 127);
//myInstrument.setMod(VOL9);
myInstrument.setVolume(VOL9);
// BJ == true;
Serial.print("Tone00 active at vol:");
Serial.println(VOL9);
Serial.println(analogRead(A9));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(41, HIGH);
}
else if (!CV) {
digitalWrite(41, LOW);
}
}
if (button9.wasReleased()) {
myInstrument.pause (true);
// BJ == false;
//Kill ControlVoltage
digitalWrite(41, LOW);
}
}

@ -0,0 +1,564 @@
#include <SensorToButton.h>
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
//note values
const char note1[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note5[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note6[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note7[] PROGMEM = ":d=128,b=300:f+"; //plays f5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:b+"; //plays b5
//instruments
MusicWithoutDelay myI(note1);
MusicWithoutDelay myIn(note2);
MusicWithoutDelay myIns(note3);
MusicWithoutDelay myInst(note4);
MusicWithoutDelay myInstr(note5);
MusicWithoutDelay myInstru(note6);
MusicWithoutDelay myInstrum(note7);
MusicWithoutDelay myInstrume(note8);
MusicWithoutDelay myInstrumen(note9);
MusicWithoutDelay myInstrument(note10);
int count;
//int vol;
//int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9;
bool CV;
bool ZER;
bool ONE;
bool TWO;
bool THR;
bool FOU;
bool FIV;
bool SIX;
bool SEV;
bool EIG;
bool NIN;
SensorToButton button0(TH0, pressUp, 50);
SensorToButton button1(TH1, pressUp, 50);
SensorToButton button2(TH2, pressUp, 50);
SensorToButton button3(TH3, pressUp, 50);
SensorToButton button4(TH4, pressUp, 50);
SensorToButton button5(TH5, pressUp, 50);
SensorToButton button6(TH6, pressUp, 50);
SensorToButton button7(TH7, pressUp, 50);
SensorToButton button8(TH8, pressUp, 50);
SensorToButton button9(TH9, pressUp, 50);
void setup() {
Serial.begin(9600);
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (analogRead(A0) + 20);
TH1 = (analogRead(A1) + 20);
TH2 = (analogRead(A2) + 20);
TH3 = (analogRead(A3) + 20);
TH4 = (analogRead(A4) + 20);
TH5 = (analogRead(A5) + 20);
TH6 = (analogRead(A6) + 20);
TH7 = (analogRead(A7) + 20);
TH8 = (analogRead(A8) + 20);
TH9 = (analogRead(A9) + 20);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
myI.begin(CHA, SINE, ENVELOPE0, 0);
myIn.begin(SINE, ENVELOPE0, 0);
myIns.begin(SINE, ENVELOPE0, 0);
myInst.begin(SINE, ENVELOPE0, 0);
myInstr.begin(SINE, ENVELOPE0, 0);
myInstru.begin(SINE, ENVELOPE0, 0);
myInstrum.begin(SINE, ENVELOPE0, 0);
myInstrume.begin(SINE, ENVELOPE0, 0);
myInstrumen.begin(SINE, ENVELOPE0, 0);
myInstrument.begin(SINE, ENVELOPE0, 0);
myI.pause(true);
myIn.pause(true);
myIns.pause(true);
myInst.pause(true);
myInstr.pause(true);
myInstru.pause(true);
myInstrum.pause(true);
myInstrume.pause(true);
myInstrumen.pause(true);
myInstrument.pause(true);
Serial.println("go!");
}
void loop() {
CV = digitalRead(22);
count = 0;
button0.read (A0);
button1.read (A1);
button2.read (A2);
button3.read (A3);
button4.read (A4);
button5.read (A5);
button6.read (A6);
button7.read (A7);
button8.read (A8);
button9.read (A9);
myI.update();
myIn.update();
myIns.update();
myInst.update();
myInstr.update();
myInstru.update();
myInstrum.update();
myInstrume.update();
myInstrumen.update();
myInstrument.update();
//Messure LDR inputs
// VA0 = analogRead(A0);
// VA1 = analogRead(A1);
// VA2 = analogRead(A2);
// VA3 = analogRead(A3);
//
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
// VA4 = analogRead(A4);
// VA5 = analogRead(A5);
// VA6 = analogRead(A6);
// VA7 = analogRead(A7);
//
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
// VA8 = analogRead(A8);
// VA9 = analogRead(A9);
//
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.println(" ");
if (button0.isPressed()) {
count++;
ZER == true;
}
else {
ZER == false;
}
if (button1.isPressed()) {
count++;
ONE == true;
}
else {
ONE == false;
}
if (button2.isPressed()) {
count++;
TWO == true;
}
else {
TWO == false;
}
if (button3.isPressed()) {
count++;
THR == true;
}
else if{
THR == false;
}
if (button4.isPressed()) {
count++;
FOU == true;
}
else {
FOU == false;
}
if (button5.isPressed()) {
count++;
FIV == true;
}
else {
FIV == false;
}
if (button6.isPressed()) {
count++;
SIX == true;
}
else {
SIX == false;
}
if (button7.isPressed()) {
count++;
SEV == true;
}
else {
SEV == false;
}
if (button8.isPressed()) {
count++;
EIG == true;
}
else {
EIG == false;
}
if (button9.isPressed()) {
count++;
NIN == true;
}
else {
NIN == false;
}
Serial.print("Intruments playing = ");
Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
//vol = 100/count + 25;
myI.play(true);
// myI.setVolume(vol);
VOL0 = constrain(map(analogRead(A0), TH0, 500, 30, 127), 30, 127);
//myI.setMod(VOL0);
myI.setVolume(VOL0);
// BA == true;
Serial.print("Tone0 active at vol:");
Serial.println(VOL0);
Serial.println(analogRead(A0));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(23, HIGH);
}
else if (!CV) {
digitalWrite(23, LOW);
}
}
if (!ZER) {
myI.pause (true);
// BA == false;
//Kill ControlVoltage
digitalWrite(23, LOW);
}
if (ONE) {
// vol = 100/count + 25;
myIn.play(true);
// myIn.setVolume(vol);
VOL1 = constrain(map(analogRead(A1), TH1, 500, 30, 127), 30, 127);
//myIn.setMod(VOL1);
myIn.setVolume(VOL1);
// BB == true;
Serial.print("Tone1 active at vol:");
Serial.println(VOL1);
Serial.println(analogRead(A1));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(25, HIGH);
}
else if (!CV) {
digitalWrite(25, LOW);
}
}
if (!ONE) {
myIn.pause (true);
// BB == false;
//Kill ControlVoltage
digitalWrite(25, LOW);
}
if (TWO) {
// vol = 100/count + 25;
myIns.play(true);
// myIns.setVolume(vol);
VOL2 = constrain(map(analogRead(A2), TH2, 500, 30, 127), 30, 127);
//myIns.setMod(VOL2);
myIns.setVolume(VOL2);
// BC == true;
Serial.print("Tone2 active at vol:");
Serial.println(VOL2);
Serial.println(analogRead(A2));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(27, HIGH);
}
else if (!CV) {
digitalWrite(27, LOW);
}
}
if (!TWO) {
myIns.pause (true);
// BC == false;
//Kill ControlVoltage
digitalWrite(27, LOW);
}
if (THR) {
// vol = 100/count + 25;
myInst.play(true);
// myInst.setVolume(vol);
VOL3 = constrain(map(analogRead(A3), TH3, 500, 30, 127), 30, 127);
//myInst.setMod(VOL3);
myInst.setVolume(VOL3);
// BD == true;
Serial.print("Tone3 active at vol:");
Serial.println(VOL3);
Serial.println(analogRead(A3));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(29, HIGH);
}
else if (!CV) {
digitalWrite(29, LOW);
}
}
if (!THR) {
myInst.pause (true);
// BD == false;
//Kill ControlVoltage
digitalWrite(29, LOW);
}
if (FOU) {
// vol = 100/count + 25;
myInstr.play(true);
// myInstr.setVolume(vol);
VOL4 = constrain(map(analogRead(A4), TH4, 500, 30, 127), 30, 127);
//myInstr.setMod(VOL4);
myInstr.setVolume(VOL4);
// BE == true;
Serial.print("Tone4 active at vol:");
Serial.println(VOL4);
Serial.println(analogRead(A4));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(31, HIGH);
}
else if (!CV) {
digitalWrite(31, LOW);
}
}
if (!FOU) {
myInstr.pause (true);
// BE == false;
//Kill ControlVoltage
digitalWrite(31, LOW);
}
if (FIV) {
// vol = 100/count + 25;
myInstru.play(true);
// myInstru.setVolume(vol);
VOL5 = constrain(map(analogRead(A5), TH5, 500, 30, 127), 30, 127);
//myInstru.setMod(VOL5);
myInstru.setVolume(VOL5);
// BF == true;
Serial.print("Tone5 active at vol:");
Serial.println(VOL5);
Serial.println(analogRead(A5));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(33, HIGH);
}
else if (!CV) {
digitalWrite(33, LOW);
}
}
if (!FIV) {
myInstru.pause (true);
// BF == false;
//Kill ControlVoltage
digitalWrite(33, LOW);
}
if (SIX) {
// vol = 100/count + 25;
myInstrum.play(true);
// myInstrum.setVolume(vol);
VOL6 = constrain(map(analogRead(A6), TH6, 500, 30, 127), 30, 127);
//myInstrum.setMod(VOL6);
myInstrum.setVolume(VOL6);
// BG == true;
Serial.print("Tone6 active at vol:");
Serial.println(VOL6);
Serial.println(analogRead(A6));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(35, HIGH);
}
else if (!CV) {
digitalWrite(35, LOW);
}
}
if (!SIX) {
myInstrum.pause (true);
// BG == false;
//Kill ControlVoltage
digitalWrite(35, LOW);
}
if (SEV) {
// vol = 100/count + 25;
myInstrume.play(true);
// myInstrume.setVolume(vol);
VOL7 = constrain(map(analogRead(A7), TH7, 500, 30, 127), 30, 127);
//myInstrume.setMod(VOL7);
myInstrume.setVolume(VOL7);
// BH == true;
Serial.print("Tone7 active at vol:");
Serial.println(VOL7);
Serial.println(analogRead(A7));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(37, HIGH);
}
else if (!CV) {
digitalWrite(37, LOW);
}
}
if (!SEV) {
myInstrume.pause (true);
// BH == false;
//Kill ControlVoltage
digitalWrite(37, LOW);
}
if (EIG) {
// vol = 100/count + 25;
myInstrumen.play(true);
// myInstrumen.setVolume(vol);
VOL8 = constrain(map(analogRead(A8), TH8, 500, 30, 127), 30, 127);
//myInstrumen.setMod(VOL8);
myInstrumen.setVolume(VOL8);
// BI == true;
Serial.print("Tone8 active at vol:");
Serial.println(VOL8);
Serial.println(analogRead(A8));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(39, HIGH);
}
else if (!CV) {
digitalWrite(39, LOW);
}
}
if (!EIG) {
myInstrumen.pause (true);
// BI == false;
//Kill ControlVoltage
digitalWrite(39, LOW);
}
if (NIN) {
// vol = 100/count + 25;
myInstrument.play(true);
// myInstrument.setVolume(vol);
VOL9 = constrain(map(analogRead(A9), TH9, 500, 30, 127), 30, 127);
//myInstrument.setMod(VOL9);
myInstrument.setVolume(VOL9);
// BJ == true;
Serial.print("Tone00 active at vol:");
Serial.println(VOL9);
Serial.println(analogRead(A9));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(41, HIGH);
}
else if (!CV) {
digitalWrite(41, LOW);
}
}
if (!NIN) {
myInstrument.pause (true);
// BJ == false;
//Kill ControlVoltage
digitalWrite(41, LOW);
}
}

@ -0,0 +1,474 @@
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
//note values
const char note1[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note5[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note6[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note7[] PROGMEM = ":d=128,b=300:f+"; //plays f5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:b+"; //plays b5
//instruments
MusicWithoutDelay myI(note1);
MusicWithoutDelay myIn(note2);
MusicWithoutDelay myIns(note3);
MusicWithoutDelay myInst(note4);
MusicWithoutDelay myInstr(note5);
MusicWithoutDelay myInstru(note6);
MusicWithoutDelay myInstrum(note7);
MusicWithoutDelay myInstrume(note8);
MusicWithoutDelay myInstrumen(note9);
MusicWithoutDelay myInstrument(note10);
int count;
int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9;
bool CV;
bool BA;
bool BB;
bool BC;
bool BD;
bool BE;
bool BF;
bool BG;
bool BH;
bool BI;
bool BJ;
void setup() {
Serial.begin(9600);
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (analogRead(A0)+20);
TH1 = (analogRead(A1)+20);
TH2 = (analogRead(A2)+20);
TH3 = (analogRead(A3)+20);
TH4 = (analogRead(A4)+20);
TH5 = (analogRead(A5)+20);
TH6 = (analogRead(A6)+20);
TH7 = (analogRead(A7)+20);
TH8 = (analogRead(A8)+20);
TH9 = (analogRead(A9)+20);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
myI.begin(CHA, SINE, ENVELOPE0, 0);
myIn.begin(SINE, ENVELOPE0, 0);
myIns.begin(SINE, ENVELOPE0, 0);
myInst.begin(SINE, ENVELOPE0, 0);
myInstr.begin(SINE, ENVELOPE0, 0);
myInstru.begin(SINE, ENVELOPE0, 0);
myInstrum.begin(SINE, ENVELOPE0, 0);
myInstrume.begin(SINE, ENVELOPE0, 0);
myInstrumen.begin(SINE, ENVELOPE0, 0);
myInstrument.begin(SINE, ENVELOPE0, 0);
myI.pause(true);
myIn.pause(true);
myIns.pause(true);
myInst.pause(true);
myInstr.pause(true);
myInstru.pause(true);
myInstrum.pause(true);
myInstrume.pause(true);
myInstrumen.pause(true);
myInstrument.pause(true);
Serial.println("go!");
}
void loop() {
myI.update();
myIn.update();
myIns.update();
myInst.update();
myInstr.update();
myInstru.update();
myInstrum.update();
myInstrume.update();
myInstrumen.update();
myInstrument.update();
//Messure LDR multiplex inputs
VA0 = analogRead(A0);
VA1 = analogRead(A1);
VA2 = analogRead(A2);
VA3 = analogRead(A3);
//
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = analogRead(A4);
VA5 = analogRead(A5);
VA6 = analogRead(A6);
VA7 = analogRead(A7);
//
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = analogRead(A8);
VA9 = analogRead(A9);
//
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.println(" ");
count = 0;
CV = digitalRead(22);
if (VA0 > TH0) {
count++;
}
if (VA1 > TH1) {
count++;
}
if (VA2 > TH2) {
count++;
}
if (VA3 > TH3) {
count++;
}
if (VA4 > TH4) {
count++;
}
if (VA5 > TH5) {
count++;
}
if (VA6 > TH6) {
count++;
}
if (VA7 > TH7) {
count++;
}
if (VA8 > TH8) {
count++;
}
if (VA9 > TH9) {
count++;
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (VA0 > TH0 && !BA) {
vol = 100/count + 25;
myI.play(true);
myI.setVolume(vol);
VOL0 = constrain(map(VA0, TH0, 500, 30, 127), 30, 127);
//myI.setMod(VOL0);
myI.setVolume(VOL0);
BA == true;
// Serial.print("Tone1 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(23, HIGH);
}
else if (!CV) {
digitalWrite(23, LOW);
}
}
else if (VA0 < TH0 && BA) {
myI.pause (true);
BA == false;
//Kill ControlVoltage
digitalWrite(23, LOW);
}
if (VA1 > TH1 && !BB) {
vol = 100/count + 25;
myIn.play(true);
myIn.setVolume(vol);
VOL1 = constrain(map(VA1, TH1, 500, 30, 127), 30, 127);
//myIn.setMod(VOL1);
myIn.setVolume(VOL1);
BB == true;
// Serial.print("Tone2 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(25, HIGH);
}
else if (!CV) {
digitalWrite(25, LOW);
}
}
else if (VA1 < TH1 && BB) {
myIn.pause (true);
BB == false;
//Kill ControlVoltage
digitalWrite(25, LOW);
}
if (VA2 > TH2 && !BC) {
vol = 100/count + 25;
myIns.play(true);
myIns.setVolume(vol);
VOL2 = constrain(map(VA2, TH2, 500, 30, 127), 30, 127);
//myIns.setMod(VOL2);
myIns.setVolume(VOL2);
BC == true;
// Serial.print("Tone3 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(27, HIGH);
}
else if (!CV) {
digitalWrite(27, LOW);
}
}
else if (VA2 < TH2 && BC) {
myIns.pause (true);
BC == false;
//Kill ControlVoltage
digitalWrite(27, LOW);
}
if (VA3 > TH3 && !BD) {
vol = 100/count + 25;
myInst.play(true);
myInst.setVolume(vol);
VOL3 = constrain(map(VA3, TH3, 500, 30, 127), 30, 127);
//myInst.setMod(VOL3);
myInst.setVolume(VOL3);
BD == true;
// Serial.print("Tone4 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(29, HIGH);
}
else if (!CV) {
digitalWrite(29, LOW);
}
}
else if (VA3 < TH3 && BD) {
myInst.pause (true);
BD == false;
//Kill ControlVoltage
digitalWrite(29, LOW);
}
if (VA4 > TH4 && !BE) {
vol = 100/count + 25;
myInstr.play(true);
myInstr.setVolume(vol);
VOL4 = constrain(map(VA4, TH4, 500, 30, 127), 30, 127);
//myInstr.setMod(VOL4);
myInstr.setVolume(VOL4);
BE == true;
// Serial.print("Tone5 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(31, HIGH);
}
else if (!CV) {
digitalWrite(31, LOW);
}
}
else if (VA4 < TH4 && BE) {
myInstr.pause (true);
BE == false;
//Kill ControlVoltage
digitalWrite(31, LOW);
}
if (VA5 > TH5 && !BF) {
vol = 100/count + 25;
myInstru.play(true);
myInstru.setVolume(vol);
VOL5 = constrain(map(VA5, TH5, 500, 30, 127), 30, 127);
//myInstru.setMod(VOL5);
myInstru.setVolume(VOL5);
BF == true;
// Serial.print("Tone6 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(33, HIGH);
}
else if (!CV) {
digitalWrite(33, LOW);
}
}
else if (VA5 < TH5 && BF) {
myInstru.pause (true);
BF == false;
//Kill ControlVoltage
digitalWrite(33, LOW);
}
if (VA6 > TH6 && !BG) {
vol = 100/count + 25;
myInstrum.play(true);
myInstrum.setVolume(vol);
VOL6 = constrain(map(VA6, TH6, 500, 30, 127),30, 127);
//myInstrum.setMod(VOL6);
myInstrum.setVolume(VOL6);
BG == true;
// Serial.print("Tone7 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(35, HIGH);
}
else if (!CV) {
digitalWrite(35, LOW);
}
}
else if (VA6 < TH6 && BG) {
myInstrum.pause (true);
BG == false;
//Kill ControlVoltage
digitalWrite(35, LOW);
}
if (VA7 > TH7 && !BH) {
vol = 100/count + 25;
myInstrume.play(true);
myInstrume.setVolume(vol);
VOL7 = constrain(map(VA7, TH7, 500, 30, 127), 30, 127);
//myInstrume.setMod(VOL7);
myInstrume.setVolume(VOL7);
BH == true;
// Serial.print("Tone8 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(37, HIGH);
}
else if (!CV) {
digitalWrite(37, LOW);
}
}
else if (VA7 < TH7 && BH) {
myInstrume.pause (true);
BH == false;
//Kill ControlVoltage
digitalWrite(37, LOW);
}
if (VA8 > TH8 && !BI) {
vol = 100/count + 25;
myInstrumen.play(true);
myInstrumen.setVolume(vol);
VOL8 = constrain(map(VA8, TH8, 500, 30, 127), 30, 127);
//myInstrumen.setMod(VOL8);
myInstrumen.setVolume(VOL8);
BI == true;
// Serial.print("Tone9 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(39, HIGH);
}
else if (!CV) {
digitalWrite(39, LOW);
}
}
else if (VA8 < TH8 && BI) {
myInstrumen.pause (true);
BI == false;
//Kill ControlVoltage
digitalWrite(39, LOW);
}
if (VA9 > TH9 && !BJ) {
vol = 100/count + 25;
myInstrument.play(true);
myInstrument.setVolume(vol);
VOL9 = constrain(map(VA9, TH9, 500, 30, 127), 30, 127);
//myInstrument.setMod(VOL9);
myInstrument.setVolume(VOL9);
BJ == true;
// Serial.print("Tone10 active at vol:");
// Serial.println(vol);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(41, HIGH);
}
else if (!CV) {
digitalWrite(41, LOW);
}
}
else if (VA9 < TH9 && BJ) {
myInstrument.pause (true);
BJ == false;
//Kill ControlVoltage
digitalWrite(41, LOW);
}
}

@ -0,0 +1,494 @@
//#include <SensorToButton.h>
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
//note values
const char note0[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note1[] PROGMEM = ":d=128,b=300:d-1+"; //plays d4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:a-1+"; //plays a4
const char note5[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note6[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note7[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
//instruments
MusicWithoutDelay myI(note0);
MusicWithoutDelay myIn(note1);
MusicWithoutDelay myIns(note2);
MusicWithoutDelay myInst(note3);
MusicWithoutDelay myInstr(note4);
MusicWithoutDelay myInstru(note5);
MusicWithoutDelay myInstrum(note6);
MusicWithoutDelay myInstrume(note7);
MusicWithoutDelay myInstrumen(note8);
MusicWithoutDelay myInstrument(note9);
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9;
bool CV;
bool ZER;
bool ONE;
bool TWO;
bool THR;
bool FOU;
bool FIV;
bool SIX;
bool SEV;
bool EIG;
bool NIN;
void setup() {
Serial.begin(9600);
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (analogRead(A0) + 40);
TH1 = (analogRead(A1) + 40);
TH2 = (analogRead(A2) + 40);
TH3 = (analogRead(A3) + 40);
TH4 = (analogRead(A4) + 40);
TH5 = (analogRead(A5) + 40);
TH6 = (analogRead(A6) + 40);
TH7 = (analogRead(A7) + 40);
TH8 = (analogRead(A8) + 40);
TH9 = (analogRead(A9) + 40);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
myI.begin(CHA, TRIANGLE, ENVELOPE0, 0);
myIn.begin(TRIANGLE, ENVELOPE0, 0);
myIns.begin(TRIANGLE, ENVELOPE0, 0);
myInst.begin(TRIANGLE, ENVELOPE0, 0);
myInstr.begin(TRIANGLE, ENVELOPE0, 0);
myInstru.begin(TRIANGLE, ENVELOPE0, 0);
myInstrum.begin(TRIANGLE, ENVELOPE0, 0);
myInstrume.begin(TRIANGLE, ENVELOPE0, 0);
myInstrumen.begin(TRIANGLE, ENVELOPE0, 0);
myInstrument.begin(TRIANGLE, ENVELOPE0, 0);
myI.pause(true);
myIn.pause(true);
myIns.pause(true);
myInst.pause(true);
myInstr.pause(true);
myInstru.pause(true);
myInstrum.pause(true);
myInstrume.pause(true);
myInstrumen.pause(true);
myInstrument.pause(true);
Serial.println("go!");
}
void loop() {
CV = digitalRead(22);
count = 0;
myI.update();
myIn.update();
myIns.update();
myInst.update();
myInstr.update();
myInstru.update();
myInstrum.update();
myInstrume.update();
myInstrumen.update();
myInstrument.update();
//Messure LDR inputs
VA0 = analogRead(A0);
VA1 = analogRead(A1);
VA2 = analogRead(A2);
VA3 = analogRead(A3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = analogRead(A4);
VA5 = analogRead(A5);
VA6 = analogRead(A6);
VA7 = analogRead(A7);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = analogRead(A8);
VA9 = analogRead(A9);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.println(" ");
if (VA0 > TH0) {
count++;
ZER = true;
}
else if (VA0 < TH0) {
ZER = false;
}
if (VA1 > TH1) {
count++;
ONE = true;
}
else if (VA1 < TH1) {
ONE = false;
}
if (VA2 > TH2) {
count++;
TWO = true;
}
else if (VA2 < TH2) {
TWO = false;
}
if (VA3 > TH3) {
count++;
THR = true;
}
else if (VA3 < TH3) {
THR = false;
}
if (VA4 > TH4) {
count++;
FOU = true;
}
else if (VA4 < TH4) {
FOU = false;
}
if (VA5 > TH5) {
count++;
FIV = true;
}
else if (VA5 < TH5) {
FIV = false;
}
if (VA6 > TH6) {
count++;
SIX = true;
}
else if (VA6 < TH6) {
SIX = false;
}
if (VA7 > TH7) {
count++;
SEV = true;
}
else if (VA7 < TH7) {
SEV = false;
}
if (VA8 > TH8) {
count++;
EIG = true;
}
else if (VA8 < TH8) {
EIG = false;
}
if (VA9 > TH9) {
count++;
NIN = true;
}
else if (VA9 < TH9) {
NIN = false;
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
myI.play(true);
VOL0 = 50/count+constrain(map(analogRead(A0), TH0, TH0+450, 0, 50), 0, 50);
myI.setVolume(VOL0);
// Serial.print("Tone0 active at vol:");
// Serial.println(VOL0);
// Serial.println(analogRead(A0));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(23, HIGH);
}
else if (!CV) {
digitalWrite(23, LOW);
}
}
if (!ZER) {
myI.pause (true);
//Kill ControlVoltage
digitalWrite(23, LOW);
}
if (ONE) {
myIn.play(true);
VOL1 = 50/count+constrain(map(analogRead(A1), TH1, TH1+450, 0, 50), 0, 50);
myIn.setVolume(VOL1);
// Serial.print("Tone1 active at vol:");
// Serial.println(VOL1);
// Serial.println(analogRead(A1));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(25, HIGH);
}
else if (!CV) {
digitalWrite(25, LOW);
}
}
if (!ONE) {
myIn.pause (true);
//Kill ControlVoltage
digitalWrite(25, LOW);
}
if (TWO) {
myIns.play(true);
VOL2 = 50/count+constrain(map(analogRead(A2), TH2, TH2+450, 0, 50), 0, 50);
myIns.setVolume(VOL2);
// Serial.print("Tone2 active at vol:");
// Serial.println(VOL2);
// Serial.println(analogRead(A2));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(27, HIGH);
}
else if (!CV) {
digitalWrite(27, LOW);
}
}
if (!TWO) {
myIns.pause (true);
//Kill ControlVoltage
digitalWrite(27, LOW);
}
if (THR) {
myInst.play(true);
VOL3 = 50/count+constrain(map(analogRead(A3), TH3, TH3+450, 0, 50), 0, 50);
myInst.setVolume(VOL3);
// BD == true;
// Serial.print("Tone3 active at vol:");
// Serial.println(VOL3);
// Serial.println(analogRead(A3));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(29, HIGH);
}
else if (!CV) {
digitalWrite(29, LOW);
}
}
if (!THR) {
myInst.pause (true);
//Kill ControlVoltage
digitalWrite(29, LOW);
}
if (FOU) {
myInstr.play(true);
VOL4 = 50/count+constrain(map(analogRead(A4), TH4, TH4+450, 0, 50), 0, 50);
myInstr.setVolume(VOL4);
// BE == true;
// Serial.print("Tone4 active at vol:");
// Serial.println(VOL4);
// Serial.println(analogRead(A4));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(31, HIGH);
}
else if (!CV) {
digitalWrite(31, LOW);
}
}
if (!FOU) {
myInstr.pause (true);
//Kill ControlVoltage
digitalWrite(31, LOW);
}
if (FIV) {
myInstru.play(true);
VOL5 = 50/count+constrain(map(analogRead(A5), TH5, TH5+450, 0, 50), 0, 50);
//myInstru.setMod(VOL5);
myInstru.setVolume(VOL5);
// Serial.print("Tone5 active at vol:");
// Serial.println(VOL5);
// Serial.println(analogRead(A5));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(33, HIGH);
}
else if (!CV) {
digitalWrite(33, LOW);
}
}
if (!FIV) {
myInstru.pause (true);
//Kill ControlVoltage
digitalWrite(33, LOW);
}
if (SIX) {
myInstrum.play(true);
VOL6 = 50/count+constrain(map(analogRead(A6), TH6, TH6+450, 0, 50), 0, 50);
//myInstrum.setMod(VOL6);
myInstrum.setVolume(VOL6);
// Serial.print("Tone6 active at vol:");
// Serial.println(VOL6);
// Serial.println(analogRead(A6));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(35, HIGH);
}
else if (!CV) {
digitalWrite(35, LOW);
}
}
if (!SIX) {
myInstrum.pause (true);
//Kill ControlVoltage
digitalWrite(35, LOW);
}
if (SEV) {
myInstrume.play(true);
VOL7 = 50/count+constrain(map(analogRead(A7), TH7, TH7+450, 0, 50), 0, 50);
myInstrume.setVolume(VOL7);
// Serial.print("Tone7 active at vol:");
// Serial.println(VOL7);
// Serial.println(analogRead(A7));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(37, HIGH);
}
else if (!CV) {
digitalWrite(37, LOW);
}
}
if (!SEV) {
myInstrume.pause (true);
//Kill ControlVoltage
digitalWrite(37, LOW);
}
if (EIG) {
myInstrumen.play(true);
VOL8 = 50/count+constrain(map(analogRead(A8), TH8, TH8+450, 0, 50), 0, 50);
myInstrumen.setVolume(VOL8);
// Serial.print("Tone8 active at vol:");
// Serial.println(VOL8);
// Serial.println(analogRead(A8));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(39, HIGH);
}
else if (!CV) {
digitalWrite(39, LOW);
}
}
if (!EIG) {
myInstrumen.pause (true);
//Kill ControlVoltage
digitalWrite(39, LOW);
}
if (NIN) {
myInstrument.play(true);
VOL9 = 50/count+constrain(map(analogRead(A9), TH9, TH9+450, 0, 50), 0, 50);
myInstrument.setVolume(VOL9);
// Serial.print("Tone9 active at vol:");
// Serial.println(VOL9);
// Serial.println(analogRead(A9));
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(41, HIGH);
}
else if (!CV) {
digitalWrite(41, LOW);
}
}
if (!NIN) {
myInstrument.pause (true);
//Kill ControlVoltage
digitalWrite(41, LOW);
}
}

@ -0,0 +1,341 @@
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
const char note1[] PROGMEM = {"::c-1"}; //plays c4
const char note2[] PROGMEM = {"::e-1"}; //plays e4
const char note3[] PROGMEM = {"::f-1"}; //plays f4
const char note4[] PROGMEM = {"::g-1"}; //plays g4
const char note5[] PROGMEM = {"::c"}; //plays c5
const char note6[] PROGMEM = {"::e"}; //plays e5
const char note7[] PROGMEM = {"::f"}; //plays f5
const char note8[] PROGMEM = {"::g"}; //plays g5
//const char note9[] PROGMEM = {"::c+1"}; //plays c6
//const char note10[] PROGMEM = {"::e+1"}; //plays e6
//const char note11[] PROGMEM = {"::f+1"}; //plays f6
//const char note12[] PROGMEM = {"::g+1"}; //plays g6
//instruments
MusicWithoutDelay myI(note1);
MusicWithoutDelay myIn(note2);
MusicWithoutDelay myIns(note3);
MusicWithoutDelay myInst(note4);
MusicWithoutDelay myInstr(note5);
MusicWithoutDelay myInstru(note6);
MusicWithoutDelay myInstrum(note7);
MusicWithoutDelay myInstrume(note8);
//MusicWithoutDelay myInstrumen(note9);
//MusicWithoutDelay myInstrument(note10);
//MusicWithoutDelay myInstruments(note11);
//MusicWithoutDelay myInstrumentss(note12);
int count;
int vol;
int TH;
int16_t adc0a, adc1a, adc2a, adc3a, adc0b, adc1b, adc2b, adc3b, adc0c, adc1c, adc2c, adc3c, adc0d, adc1d, adc2d, adc3d;
//bool codeswitch = false;
bool BA;
bool BB;
bool BC;
bool BD;
bool BE;
bool BF;
bool BG;
bool BH;
void setup() {
Serial.begin(115200);
//set the gain for multiplexed ins
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
//start the multiplexing
Serial.println("Initializing Multiplexing ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("Multiplexing Initialized");
//calibrate the LDRs
Serial.println ("Calibrating");
TH = (adsb.readADC_SingleEnded(3));
Serial.print ("TH=");
Serial.println (TH);
Serial.println("Initializing Music Without Delay");
myI.begin(CHA, TRIANGLE, ENVELOPE0, 0);
myIn.begin(TRIANGLE, ENVELOPE0, 0);
myIns.begin(TRIANGLE, ENVELOPE0, 0);
myInst.begin(TRIANGLE, ENVELOPE0, 0);
Serial.println("Music Witout Delay Initialized");
Serial.println("Start messuring LDRs");
}
void loop() {
// myI.update();
// myIn.update();
// myIns.update();
// myInst.update();
//Messure LDR multiplex inputs
adc0a = adsa.readADC_SingleEnded(0);
adc1a = adsa.readADC_SingleEnded(1);
adc2a = adsa.readADC_SingleEnded(2);
adc3a = adsa.readADC_SingleEnded(3);
Serial.print("AIN0A: "); Serial.println(adc0a);
Serial.print("AIN1A: "); Serial.println(adc1a);
Serial.print("AIN2A: "); Serial.println(adc2a);
Serial.print("AIN3A: "); Serial.println(adc3a);
Serial.println(" ");
adc0b = adsb.readADC_SingleEnded(0);
adc1b = adsb.readADC_SingleEnded(1);
adc2b = adsb.readADC_SingleEnded(2);
adc3b = adsb.readADC_SingleEnded(3);
Serial.print("AIN0B: "); Serial.println(adc0b);
Serial.print("AIN1B: "); Serial.println(adc1b);
Serial.print("AIN2B: "); Serial.println(adc2b);
Serial.print("AIN3B: "); Serial.println(adc3b);
Serial.println(" ");
adc0c = adsc.readADC_SingleEnded(0);
adc1c = adsc.readADC_SingleEnded(1);
adc2c = adsc.readADC_SingleEnded(2);
adc3c = adsc.readADC_SingleEnded(3);
Serial.print("AIN0C: "); Serial.println(adc0c);
Serial.print("AIN1C: "); Serial.println(adc1c);
Serial.print("AIN2C: "); Serial.println(adc2c);
Serial.print("AIN3C: "); Serial.println(adc3c);
Serial.println(" ");
adc0d = adsd.readADC_SingleEnded(0);
adc1d = adsd.readADC_SingleEnded(1);
adc2d = adsd.readADC_SingleEnded(2);
adc3d = adsd.readADC_SingleEnded(3);
Serial.print("AIN0D: "); Serial.println(adc0d);
Serial.print("AIN1D: "); Serial.println(adc1d);
Serial.print("AIN2D: "); Serial.println(adc2d);
Serial.print("AIN3D: "); Serial.println(adc3d);
Serial.println(" ");
count = 0;
if (adc0a < TH) {
count++;
}
if (adc1a < TH) {
count++;
}
if (adc2a < TH) {
count++;
}
if (adc3a < TH) {
count++;
}
if (adc0b < TH) {
count++;
}
if (adc1b < TH) {
count++;
}
if (adc2b < TH) {
count++;
}
if (adc3b < TH) {
count++;
}
// if (adc0c < TH) {
// count++;
// }
// if (adc1c < TH) {
// count++;
// }
// if (adc2c < TH) {
// count++;
// }
// if (adc3c < TH) {
// count++;
// }
Serial.print("Intruments playing=");
Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (adc0a < TH && !BA) {
vol = 120/count;
myI.play(true);
myI.setVolume(vol);
// myI.setSustain(50);
//myI.setMod(int mod1 = map(adc0a, 3000, 60000, 0, 127);
BA == true;
Serial.print("Tone1 active at vol:");
Serial.println(vol);
}
else if (adc0a > TH && BA) {
myI.pause (true);
BA == false;
Serial.println("Tone1 not active");
}
if (adc1a < TH && !BB) {
vol = 120/count;
myIn.play(true);
myIn.setVolume(vol);
// myIn.setSustain(50);
BB == true;
Serial.print("Tone2 active at vol:");
Serial.println(vol);
}
else if (adc1a > TH && BB) {
myIn.pause (true);
BB == false;
Serial.println("Tone2 not active");
}
if (adc2a < TH && !BC) {
vol = 120/count;
myIns.play(true);
myIns.setVolume(vol);
// myIns.setSustain(50);
BC == true;
Serial.print("Tone3 active at vol:");
Serial.println(vol);
}
else if (adc2a > TH && BC) {
myIns.pause (true);
BC == false;
Serial.println("Tone3 not active");
}
if (adc3a < TH && !BD) {
vol = 120/count;
myInst.play(true);
myInst.setVolume(vol);
// myInst.setSustain(50);
BD == true;
Serial.print("Tone4 active at vol:");
Serial.println(vol);
}
else if (adc3a < TH && BD) {
myInst.pause (true);
BD == false;
Serial.println("Tone4 not active");
}
if (adc0b < TH && !BE) {
vol = 120/count;
myInstr.play(true);
myInstr.setVolume(vol);
// myInst.setSustain(50);
BE == true;
Serial.print("Tone5 active at vol:");
Serial.println(vol);
}
else if (adc0b < TH && BE) {
myInstr.pause (true);
BE == false;
Serial.println("Tone5 not active");
}
if (adc1b < TH && !BF) {
vol = 120/count;
myInstru.play(true);
myInstru.setVolume(vol);
// myInst.setSustain(50);
BF == true;
Serial.print("Tone6 active at vol:");
Serial.println(vol);
}
else if (adc1b < TH && BF) {
myInstru.pause (true);
BF == false;
Serial.println("Tone6 not active");
}
if (adc2b < TH && !BG) {
vol = 120/count;
myInstrum.play(true);
myInstrum.setVolume(vol);
// myInst.setSustain(50);
BG == true;
Serial.print("Tone7 active at vol:");
Serial.println(vol);
}
else if (adc2b < TH && BG) {
myInstrum.pause (true);
BG == false;
Serial.println("Tone7 not active");
}
if (adc3b < TH && !BH) {
vol = 120/count;
myInstrume.play(true);
myInstrume.setVolume(vol);
// myInst.setSustain(50);
BH == true;
Serial.print("Tone8 active at vol:");
Serial.println(vol);
}
else if (adc3b < TH && BH) {
myInstrume.pause (true);
BH == false;
Serial.println("Tone8 not active");
}
// if (adc0b < TH) {
// //result += tone_5.next() * (1/count);
// }
// if (adc1b < TH) {
// //result += tone_6.next() * (1/count);
// }
// if (adc2b < TH) {
// //result += tone_7.next() * (1/count);
// }
// if (adc3b < TH) {
// //result += tone_8.next() * (1/count);
// }
// if (adc0c < TH) {
// //result += tone_9.next() * (1/count);
// }
// if (adc1c < TH) {
// //result += tone_10.next() * (1/count);
// }
// if (adc2c < TH) {
// //result += tone_11.next() * (1/count);
// }
// if (adc3c < TH) {
// //result += tone_12.next() * (1/count);
// }
}

@ -0,0 +1,331 @@
#include <MusicWithoutDelay.h>
//#include <synth.h>
//#include <tables.h>
// #include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
//Adafruit_ADS1115 adsc (0x4A);
//Adafruit_ADS1115 adsd (0x4B);
//note values
const char note1[] PROGMEM = "::c"; //plays c
const char note2[] PROGMEM = "::e"; //plays e
const char note3[] PROGMEM = "::f"; //plays f
const char note4[] PROGMEM = "::g"; //plays g
//const char note5[] PROGMEM = {"::c"}; //plays c
//const char note6[] PROGMEM = {"::e"}; //plays e
//const char note7[] PROGMEM = {"::f"}; //plays f
//const char note8[] PROGMEM = {"::g"}; //plays g
//const char note9[] PROGMEM = {"::c+1"}; //plays c6
//const char note10[] PROGMEM = {"::e+1"}; //plays e6
//const char note11[] PROGMEM = {"::f+1"}; //plays f6
//const char note12[] PROGMEM = {"::g+1"}; //plays g6
//instruments
MusicWithoutDelay myI(note1);
MusicWithoutDelay myIn(note2);
MusicWithoutDelay myIns(note3);
MusicWithoutDelay myInst(note4);
//MusicWithoutDelay myInstr(note5);
//MusicWithoutDelay myInstru(note6);
//MusicWithoutDelay myInstrum(note7);
//MusicWithoutDelay myInstrume(note8);
//MusicWithoutDelay myInstrumen(note9);
//MusicWithoutDelay myInstrument(note10);
//MusicWithoutDelay myInstruments(note11);
//MusicWithoutDelay myInstrumentss(note12);
int count;
int vol;
int TH;
int16_t adc0a, adc1a, adc2a, adc3a, adc0b, adc1b, adc2b, adc3b, adc0c, adc1c, adc2c, adc3c, adc0d, adc1d, adc2d, adc3d;
//bool codeswitch = false;
bool BA;
bool BB;
bool BC;
bool BD;
//bool BE;
//bool BF;
//bool BG;
//bool BH;
void setup() {
Serial.begin(9600);
//set the gain for multiplexed ins
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
// adsc.setGain(GAIN_ONE);
// adsd.setGain(GAIN_ONE);
//start the multiplexing
Serial.println("Initializing Multiplexing ");
adsa.begin();
adsb.begin();
// adsc.begin();
// adsd.begin();
Serial.println("Multiplexing Initialized");
//calibrate the LDRs
Serial.println ("Calibrating");
TH = (adsb.readADC_SingleEnded(3)/*-500*/);
Serial.print ("TH=");
Serial.println (TH);
Serial.println("Waiting for Music Without Delay");
Serial.println("Initializing Music Without Delay");
myI.begin(CHA, TRIANGLE, ENVELOPE0, 0);
myIn.begin(TRIANGLE, ENVELOPE0, 0);
myIns.begin(TRIANGLE, ENVELOPE0, 0);
myInst.begin(TRIANGLE, ENVELOPE0, 0);
// myInstr.begin(TRIANGLE, ENVELOPE0, 0);
// myInstru.begin(TRIANGLE, ENVELOPE0, 0);
// myInstrum.begin(TRIANGLE, ENVELOPE0, 0);
// myInstrume.begin(TRIANGLE, ENVELOPE0, 0);
Serial.println("Music Witout Delay Initialized");
Serial.println("Start messuring LDRs");
}
void loop() {
myI.update();
myIn.update();
myIns.update();
myInst.update();
// myInstr.update();
// myInstru.update();
// myInstrum.update();
// myInstrume.update();
//Messure LDR multiplex inputs
adc0a = adsa.readADC_SingleEnded(0);
adc1a = adsa.readADC_SingleEnded(1);
adc2a = adsa.readADC_SingleEnded(2);
adc3a = adsa.readADC_SingleEnded(3);
Serial.print("AIN0A: "); Serial.println(adc0a);
Serial.print("AIN1A: "); Serial.println(adc1a);
Serial.print("AIN2A: "); Serial.println(adc2a);
Serial.print("AIN3A: "); Serial.println(adc3a);
Serial.println(" ");
adc0b = adsb.readADC_SingleEnded(0);
adc1b = adsb.readADC_SingleEnded(1);
adc2b = adsb.readADC_SingleEnded(2);
adc3b = adsb.readADC_SingleEnded(3);
Serial.print("AIN0B: "); Serial.println(adc0b);
Serial.print("AIN1B: "); Serial.println(adc1b);
Serial.print("AIN2B: "); Serial.println(adc2b);
Serial.print("AIN3B: "); Serial.println(adc3b);
Serial.println(" ");
// adc0c = adsc.readADC_SingleEnded(0);
// adc1c = adsc.readADC_SingleEnded(1);
// adc2c = adsc.readADC_SingleEnded(2);
// adc3c = adsc.readADC_SingleEnded(3);
//
// Serial.print("AIN0C: "); Serial.println(adc0c);
// Serial.print("AIN1C: "); Serial.println(adc1c);
// Serial.print("AIN2C: "); Serial.println(adc2c);
// Serial.print("AIN3C: "); Serial.println(adc3c);
// Serial.println(" ");
//
// adc0d = adsd.readADC_SingleEnded(0);
// adc1d = adsd.readADC_SingleEnded(1);
// adc2d = adsd.readADC_SingleEnded(2);
// adc3d = adsd.readADC_SingleEnded(3);
//
// Serial.print("AIN0D: "); Serial.println(adc0d);
// Serial.print("AIN1D: "); Serial.println(adc1d);
// Serial.print("AIN2D: "); Serial.println(adc2d);
// Serial.print("AIN3D: "); Serial.println(adc3d);
// Serial.println(" ");
count = 0;
if (adc0a > TH) {
count++;
}
if (adc1a > TH) {
count++;
}
if (adc2a > TH) {
count++;
}
if (adc3a > TH) {
count++;
}
// if (adc0b > TH) {
// count++;
// }
// if (adc1b > TH) {
// count++;
// }
// if (adc2b > TH) {
// count++;
// }
// if (adc3b > TH) {
// count++;
// }
// if (adc0c > TH) {
// count++;
// }
// if (adc1c > TH) {
// count++;
// }
// if (adc2c > TH) {
// count++;
// }
// if (adc3c >TH) {
// count++;
// }
Serial.print("Intruments playing = ");
Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (adc0a > TH && !BA) {
vol = 125/count;
myI.play(true);
myI.setVolume(vol);
//myI.setSustain(100);
//myI.setMod(int mod1 = map(adc0a, 1000, 8000, 0, 127);
BA == true;
Serial.print("Tone1 active at vol:");
Serial.println(vol);
}
else if (adc0a < TH && BA) {
myI.pause (true);
BA == false;
Serial.println("Tone1 not active");
}
if (adc1a > TH && !BB) {
vol = 125/count;
myIn.play(true);
myIn.setVolume(vol);
//myIn.setSustain(100);
BB == true;
Serial.print("Tone2 active at vol:");
Serial.println(vol);
}
else if (adc1a < TH && BB) {
myIn.pause (true);
BB == false;
Serial.println("Tone2 not active");
}
if (adc2a > TH && !BC) {
vol = 125/count;
myIns.play(true);
myIns.setVolume(vol);
//myIns.setSustain(100);
BC == true;
Serial.print("Tone3 active at vol:");
Serial.println(vol);
}
else if (adc2a < TH && BC) {
myIns.pause (true);
BC == false;
Serial.println("Tone3 not active");
}
if (adc3a > TH && !BD) {
vol = 125/count;
myInst.play(true);
myInst.setVolume(vol);
//myInst.setSustain(100);
BD == true;
Serial.print("Tone4 active at vol:");
Serial.println(vol);
}
else if (adc3a < TH && BD) {
myInst.pause (true);
BD == false;
Serial.println("Tone4 not active");
}
// if (adc0b > TH && !BE) {
// vol = 120/count;
// myInstr.play(true);
// myInstr.setVolume(vol);
//// myInst.setSustain(50);
// BE == true;
// Serial.print("Tone5 active at vol:");
// Serial.println(vol);
// }
//
// else if (adc0b < TH && BE) {
// myInstr.pause (true);
// BE == false;
// Serial.println("Tone5 not active");
// }
//
// if (adc1b > TH && !BF) {
// vol = 120/count;
// myInstru.play(true);
// myInstru.setVolume(vol);
//// myInst.setSustain(50);
// BF == true;
// Serial.print("Tone6 active at vol:");
// Serial.println(vol);
// }
//
// else if (adc1b < TH && BF) {
// myInstru.pause (true);
// BF == false;
// Serial.println("Tone6 not active");
// }
//
//
// if (adc2b > TH && !BG) {
// vol = 120/count;
// myInstrum.play(true);
// myInstrum.setVolume(vol);
//// myInst.setSustain(50);
// BG == true;
// Serial.print("Tone7 active at vol:");
// Serial.println(vol);
// }
//
// else if (adc2b < TH && BG) {
// myInstrum.pause (true);
// BG == false;
// Serial.println("Tone7 not active");
// }
//
// if (adc3b > TH && !BH) {
// vol = 120/count;
// myInstrume.play(true);
// myInstrume.setVolume(vol);
//// myInst.setSustain(50);
// BH == true;
// Serial.print("Tone8 active at vol:");
// Serial.println(vol);
// }
//
// else if (adc3b < TH && BH) {
// myInstrume.pause (true);
// BH == false;
// Serial.println("Tone8 not active");
// }
}

@ -0,0 +1,150 @@
/**************************************************************************/
/*!
@file Adafruit_ADS1015.h
@author K. Townsend (Adafruit Industries)
@license BSD (see license.txt)
This is a library for the Adafruit ADS1015 breakout board
----> https://www.adafruit.com/products/???
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
@section HISTORY
v1.0 - First release
v1.1 - Added ADS1115 support - W. Earl
*/
/**************************************************************************/
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include <Wire.h>
/*=========================================================================
I2C ADDRESS/BITS
-----------------------------------------------------------------------*/
#define ADS1015_ADDRESS (0x48) // 1001 000 (ADDR = GND)
/*=========================================================================*/
/*=========================================================================
CONVERSION DELAY (in mS)
-----------------------------------------------------------------------*/
#define ADS1015_CONVERSIONDELAY (1)
#define ADS1115_CONVERSIONDELAY (8)
/*=========================================================================*/
/*=========================================================================
POINTER REGISTER
-----------------------------------------------------------------------*/
#define ADS1015_REG_POINTER_MASK (0x03)
#define ADS1015_REG_POINTER_CONVERT (0x00)
#define ADS1015_REG_POINTER_CONFIG (0x01)
#define ADS1015_REG_POINTER_LOWTHRESH (0x02)
#define ADS1015_REG_POINTER_HITHRESH (0x03)
/*=========================================================================*/
/*=========================================================================
CONFIG REGISTER
-----------------------------------------------------------------------*/
#define ADS1015_REG_CONFIG_OS_MASK (0x8000)
#define ADS1015_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1015_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1015_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1015_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1015_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1015_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1015_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1015_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1015_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1015_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1015_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1015_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1015_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1015_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3
#define ADS1015_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1015_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 (default)
#define ADS1015_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1015_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1015_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1015_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1015_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1015_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1015_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1015_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1015_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1015_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1015_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1015_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1015_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1015_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1015_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1015_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1015_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1015_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1015_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1015_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1015_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1015_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1015_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1015_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1015_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1015_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1015_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1015_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
/*=========================================================================*/
typedef enum
{
GAIN_TWOTHIRDS = ADS1015_REG_CONFIG_PGA_6_144V,
GAIN_ONE = ADS1015_REG_CONFIG_PGA_4_096V,
GAIN_TWO = ADS1015_REG_CONFIG_PGA_2_048V,
GAIN_FOUR = ADS1015_REG_CONFIG_PGA_1_024V,
GAIN_EIGHT = ADS1015_REG_CONFIG_PGA_0_512V,
GAIN_SIXTEEN = ADS1015_REG_CONFIG_PGA_0_256V
} adsGain_t;
class Adafruit_ADS1015
{
protected:
// Instance-specific properties
uint8_t m_i2cAddress;
uint8_t m_conversionDelay;
uint8_t m_bitShift;
adsGain_t m_gain;
public:
Adafruit_ADS1015(uint8_t i2cAddress = ADS1015_ADDRESS);
void begin(void);
uint16_t readADC_SingleEnded(uint8_t channel);
int16_t readADC_Differential_0_1(void);
int16_t readADC_Differential_2_3(void);
void startComparator_SingleEnded(uint8_t channel, int16_t threshold);
int16_t getLastConversionResults();
void setGain(adsGain_t gain);
adsGain_t getGain(void);
private:
};
// Derive from ADS1105 & override construction to set properties
class Adafruit_ADS1115 : public Adafruit_ADS1015
{
public:
Adafruit_ADS1115(uint8_t i2cAddress = ADS1015_ADDRESS);
private:
};

@ -0,0 +1,152 @@
#include <Wire.h>
#include <Adafruit_ADS1015.h>
#include <MozziGuts.h>
#include <Oscil.h>
#include <tables/square_no_alias_2048_int8.h>
//#include <ReverbTank.h> /*Only required for reverb*/
//#include <SensorToButton.h>
//ReverbTank reverb;
//Multiplex adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
#define CONTROL_RATE 64 // powers of 2 please
Oscil<SQUARE_NO_ALIAS_2048_NUM_CELLS, AUDIO_RATE> tone_1(SQUARE_NO_ALIAS_2048_DATA);
Oscil<SQUARE_NO_ALIAS_2048_NUM_CELLS, AUDIO_RATE> tone_2(SQUARE_NO_ALIAS_2048_DATA);
Oscil<SQUARE_NO_ALIAS_2048_NUM_CELLS, AUDIO_RATE> tone_3(SQUARE_NO_ALIAS_2048_DATA);
int count= 0;
boolean note1 = false;
boolean note2 = false;
boolean note3 = false;
boolean codeswitch = false;
void setup(){
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
//start the multiplexing
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
startMozzi(CONTROL_RATE);
tone_1.setFreq(262);
tone_1.setPhase(120);
tone_2.setFreq(330);
tone_2.setPhase(240 );
tone_3.setFreq(392);
}
void updateControl(){
//Log number of notes playing
if (note1){
count++;
}
if (note2){
count++;
}
if (note3){
count++;
}
}
int updateAudio(){
int result = 0;
//Play notes and mix down (according to notes playing
if (note1) {
result += tone_1.next() * (1/count);
}
if (note2) {
result += tone_2.next() * (1/count);
}
if (note3) {
result += tone_3.next() * (1/count);
}
//int arev = reverb.next(result); /*Initialize reverb*/
//return result + (arev>>3); /*Reverb: Mix signal*/
//return arev; /*Reverb: Wet signal*/
//return result; /*Reverb: Dry signal*/
//if (!codeswitch){
//polysynth
return result;
//}
//else if (codeswitch) {
//controlvoltage
//return CV;
//}
}
void loop(){
//Messure LDR multiplex inputs
int16_t adc0a, adc1a, adc2a, adc3a, adc0b, adc1b, adc2b, adc3b, adc0c, adc1c, adc2c, adc3c, adc0d, adc1d, adc2d, adc3d;
adc0a = adsa.readADC_SingleEnded(0);
adc1a = adsa.readADC_SingleEnded(1);
adc2a = adsa.readADC_SingleEnded(2);
adc3a = adsa.readADC_SingleEnded(3);
// Serial.print("AIN0A: "); Serial.println(adc0a);
// Serial.print("AIN1A: "); Serial.println(adc1a);
// Serial.print("AIN2A: "); Serial.println(adc2a);
// Serial.print("AIN3A: "); Serial.println(adc3a);
// Serial.println(" ");
adc0b = adsb.readADC_SingleEnded(0);
adc1b = adsb.readADC_SingleEnded(1);
adc2b = adsb.readADC_SingleEnded(2);
adc3b = adsb.readADC_SingleEnded(3);
// Serial.print("AIN0B: "); Serial.println(adc0b);
// Serial.print("AIN1B: "); Serial.println(adc1b);
// Serial.print("AIN2B: "); Serial.println(adc2b);
// Serial.print("AIN3B: "); Serial.println(adc3b);
// Serial.println(" ");
adc0c = adsc.readADC_SingleEnded(0);
adc1c = adsc.readADC_SingleEnded(1);
adc2c = adsc.readADC_SingleEnded(2);
adc3c = adsc.readADC_SingleEnded(3);
// Serial.print("AIN0C: "); Serial.println(adc0c);
// Serial.print("AIN1C: "); Serial.println(adc1c);
// Serial.print("AIN2C: "); Serial.println(adc2c);
// Serial.print("AIN3C: "); Serial.println(adc3c);
// Serial.println(" ");
adc0d = adsd.readADC_SingleEnded(0);
adc1d = adsd.readADC_SingleEnded(1);
adc2d = adsd.readADC_SingleEnded(2);
adc3d = adsd.readADC_SingleEnded(3);
// Serial.print("AIN0D: "); Serial.println(adc0d);
// Serial.print("AIN1D: "); Serial.println(adc1d);
// Serial.print("AIN2D: "); Serial.println(adc2d);
// Serial.print("AIN3D: "); Serial.println(adc3d);
// Serial.println(" ");
// delay(1000);
audioHook();
//Switch between auditive output and CV out
// if (digitalRead (8) == LOW){
// codeswitch = false;
// }
// if (digitalRead (8) == HIGH){
// codeswitch = true;
// }
}

@ -0,0 +1,110 @@
#include <Arduino.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
#include <NoodleSynth.h>
#include <SensorToButton.h>
SensorToButton btn(2, 50); //pin, debounce time(ms)
synthEngine mixer(20E3);
#define NUM 8
MusicWithoutDelay instruments[NUM];
int vol = 0;
uint16_t INTERVAL = 15;
bool mode = true;
int flip = 1;
// int pins[6] = {CHA,CHB,6,9,22,23}; //for Teensy 3+
int pins[2] = {CHA,CHB};
//multiplex adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
int count= 0;
int TH;
int16_t adc0a, adc1a, adc2a, adc3a, adc0b, adc1b, adc2b, adc3b, adc0c, adc1c, adc2c, adc3c, adc0d, adc1d, adc2d, adc3d;
boolean codeswitch = false;
void setup(){
//set the gain for multiplexed ins
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
//start the multiplexing
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
for (byte i = 0; i < NUM; i++) {
MusicWithoutDelay *myInstrument = &instruments[i];
float freq = MusicWithoutDelay::getNoteAsFrequency(NOTE_A3 + i * 4); //Function gives Frequceny using a Formula. Every other 4 notes is a harmonic major(something like that)
myInstrument->begin(pins[i%2], SINE, ENVELOPE0, 0).setVolume(0).setFrequency(freq); //set up instruments and their frequencies
}
//set tone frequency and phase
// tone_1.setFreq(165);
// tone_1.setPhase(0);
// tone_2.setFreq(196);
// tone_2.setPhase(30);
// tone_3.setFreq(220);
// tone_3.setPhase(60);
// tone_4.setFreq(262);
// tone_4.setPhase(90);
// tone_5.setFreq(330);
// tone_5.setPhase(120);
// tone_6.setFreq(392);
// tone_6.setPhase(150);
// tone_7.setFreq(440);
// tone_7.setPhase(180);
// tone_8.setFreq(523);
// tone_8.setPhase(210);
// tone_9.setFreq(659);
// tone_9.setPhase(240);
// tone_10.setFreq(784);
// tone_10.setPhase(270);
// tone_11.setFreq(880);
// tone_11.setPhase(300);
// tone_12.setFreq(1047);
// tone_12.setPhase(330);
//calibrate (set treshold)
TH = adsb.readADC_SingleEnded(3);
}
uint32_t pMillis, serialMillis;
void loop(){
uint32_t cMillis = millis();
btn.read();
// if (cMillis - serialMillis > 500) {
for (byte i = 0; i < NUM; i++) {
MusicWithoutDelay *myInstrument = &instruments[i];
myInstrument->update().setVolume(vol); //update instruments
}
// serialMillis = cMillis;
// }
if (mode) {
vol = analogRead(potPin);
vol = map(vol, 0, 1023, 0, 127);
}
else {
if (cMillis - pMillis >= INTERVAL) { //Vibrato
vol += flip;
if (vol < 90 || vol > 126) {
flip *= -1;
}
pMillis = cMillis;
}
}
if (btn.wasPressed()) {
vol = 95;
mode = !mode;
}
}

@ -0,0 +1,194 @@
#include <MozziGuts.h>
#include <Oscil.h>
#include <tables/saw256_int8.h>
#include <Adafruit_ADS1015.h>
#include <Wire.h>
//#include <mozzi_fixmath.h>
//#include <utility/twi_nonblock.h>
#define CONTROL_RATE 128 // powers of 2 please
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_1(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_2(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_3(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_4(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_5(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_6(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_7(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_8(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_9(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_10(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_11(SAW256_DATA);
Oscil<SAW256_NUM_CELLS, AUDIO_RATE> tone_12(SAW256_DATA);
//multiplex adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
int count= 0;
int TH;
int16_t adc0a, adc1a, adc2a, adc3a, adc0b, adc1b, adc2b, adc3b, adc0c, adc1c, adc2c, adc3c, adc0d, adc1d, adc2d, adc3d;
boolean note1 = false;
boolean note2 = false;
boolean note3 = false;
boolean codeswitch = false;
void setup(){
//set the gain for multiplexed ins
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
//start the multiplexing
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
startMozzi(CONTROL_RATE);
//set tone frequency and phase
tone_1.setFreq(165);
tone_1.setPhase(0);
tone_2.setFreq(196);
tone_2.setPhase(30);
tone_3.setFreq(220);
tone_3.setPhase(60);
tone_4.setFreq(262);
tone_4.setPhase(90);
tone_5.setFreq(330);
tone_5.setPhase(120);
tone_6.setFreq(392);
tone_6.setPhase(150);
tone_7.setFreq(440);
tone_7.setPhase(180);
tone_8.setFreq(523);
tone_8.setPhase(210);
tone_9.setFreq(659);
tone_9.setPhase(240);
tone_10.setFreq(784);
tone_10.setPhase(270);
tone_11.setFreq(880);
tone_11.setPhase(300);
tone_12.setFreq(1047);
tone_12.setPhase(330);
//calibrate (set treshold)
TH = adsb.readADC_SingleEnded(3);
}
void updateControl(){
//log number of notes playing
if (adc0a < TH) {
count++;
}
if (adc1a < TH) {
count++;
}
if (adc2a < TH) {
count++;
}
if (adc3a < TH) {
count++;
}
if (adc0b < TH) {
count++;
}
if (adc1b < TH) {
count++;
}
if (adc2b < TH) {
count++;
}
if (adc3b < TH) {
count++;
}
if (adc0c < TH) {
count++;
}
if (adc1c < TH) {
count++;
}
if (adc2c < TH) {
count++;
}
if (adc3c < TH) {
count++;
}
}
int updateAudio(){
int result = 0;
//Play notes and mix down (according to notes playing
if (adc0a < TH) {
result += tone_1.next() * (1/count);
}
if (adc1a < TH) {
result += tone_2.next() * (1/count);
}
if (adc2a < TH) {
result += tone_3.next() * (1/count);
}
if (adc3a < TH) {
result += tone_4.next() * (1/count);
}
if (adc0b < TH) {
result += tone_5.next() * (1/count);
}
if (adc1b < TH) {
result += tone_6.next() * (1/count);
}
if (adc2b < TH) {
result += tone_7.next() * (1/count);
}
if (adc3b < TH) {
result += tone_8.next() * (1/count);
}
if (adc0c < TH) {
result += tone_9.next() * (1/count);
}
if (adc1c < TH) {
result += tone_10.next() * (1/count);
}
if (adc2c < TH) {
result += tone_11.next() * (1/count);
}
if (adc3c < TH) {
result += tone_12.next() * (1/count);
}
return result;
}
void loop(){
//Messure LDR multiplex inputs
adc0a = adsa.readADC_SingleEnded(0);
adc1a = adsa.readADC_SingleEnded(1);
adc2a = adsa.readADC_SingleEnded(2);
adc3a = adsa.readADC_SingleEnded(3);
adc0b = adsb.readADC_SingleEnded(0);
adc1b = adsb.readADC_SingleEnded(1);
adc2b = adsb.readADC_SingleEnded(2);
adc3b = adsb.readADC_SingleEnded(3);
adc0c = adsc.readADC_SingleEnded(0);
adc1c = adsc.readADC_SingleEnded(1);
adc2c = adsc.readADC_SingleEnded(2);
adc3c = adsc.readADC_SingleEnded(3);
adc0d = adsd.readADC_SingleEnded(0);
adc1d = adsd.readADC_SingleEnded(1);
adc2d = adsd.readADC_SingleEnded(2);
adc3d = adsd.readADC_SingleEnded(3);
audioHook();
}

@ -0,0 +1,713 @@
#include <MozziGuts.h>
#include <Oscil.h>
#include <tables/sin2048_int8.h>
#include <Line.h> // for envelope
#include <ADSR.h>
#include <mozzi_fixmath.h>
#include <ADC.h>
#include <IntervalTimer.h>
//#include <MusicWithoutDelay.h>
//#include <synth.h>
//#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
//const char note0[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
//const char note1[] PROGMEM = ":d=128,b=300:d-1+"; //plays d4
//const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
//const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
//const char note4[] PROGMEM = ":d=128,b=300:a-1+"; //plays a4
//const char note5[] PROGMEM = ":d=128,b=300:c+"; //plays c5
//const char note6[] PROGMEM = ":d=128,b=300:d+"; //plays d5
//const char note7[] PROGMEM = ":d=128,b=300:e+"; //plays e5
//const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
//const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
//const char note10[] PROGMEM = ":d=128,b=300:c+1+"; //plays c6
//const char note11[] PROGMEM = ":d=128,b=300:d+1+"; //plays d6
//const char note12[] PROGMEM = ":d=128,b=300:e+1+"; //plays e6
//const char note13[] PROGMEM = ":d=128,b=300:g+1+"; //plays g6
//const char note14[] PROGMEM = ":d=128,b=300:a+1+"; //plays a6
//const char note15[] PROGMEM = ":d=128,b=300:c+2+"; //plays c7
//instruments
//MusicWithoutDelay Insta(note0);
//MusicWithoutDelay Instb(note1);
//MusicWithoutDelay Instc(note2);
//MusicWithoutDelay Instd(note3);
//MusicWithoutDelay Inste(note4);
//MusicWithoutDelay Instf(note5);
//MusicWithoutDelay Instg(note6);
//MusicWithoutDelay Insth(note7);
//MusicWithoutDelay Insti(note8);
//MusicWithoutDelay Instj(note9);
//MusicWithoutDelay Instk(note10);
//MusicWithoutDelay Instl(note11);
//MusicWithoutDelay Instm(note12);
//MusicWithoutDelay Instn(note13);
//MusicWithoutDelay Insto(note14);
//MusicWithoutDelay Instp(note15);
#define CONTROL_RATE 64
#define ATTACK 50 // long enough for control rate to catch it
#define DECAY 50
#define SUSTAIN 600000 // Sustain 60 seconds unless a noteOff comes.
#define RELEASE 1000
#define ATTACK_LEVEL 255
#define DECAY_LEVEL 255
Oscil <2048, AUDIO_RATE> Insta(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instb(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instc(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instd(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Inste(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instf(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instg(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Insth(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Insti(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instj(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instk(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instl(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instm(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instn(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Insto(SIN2048_DATA);
Oscil <2048, AUDIO_RATE> Instp(SIN2048_DATA);
ADSR <CONTROL_RATE, CONTROL_RATE> envelope1;
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9, VA10, VA11, VA12, VA13, VA14, VA15;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12, TH13, TH14, TH15;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9, VOL10, VOL11, VOL12, VOL13, VOL14, VOL15;
bool CV;
bool ZER;
bool ONE;
bool TWO;
bool THR;
bool FOU;
bool FIV;
bool SIX;
bool SEV;
bool EIG;
bool NIN;
bool TEN;
bool ELE;
bool TWE;
bool THT;
bool FOT;
bool FIT;
void setup() {
Serial.begin(9600);
//set the gain for multiplexed INs
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
Serial.println("Ini MPX ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("MPX Ini");
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (adsa.readADC_SingleEnded(0) + 800);
TH1 = (adsa.readADC_SingleEnded(1) + 800);
TH2 = (adsa.readADC_SingleEnded(2) + 800);
TH3 = (adsa.readADC_SingleEnded(3) + 800);
TH4 = (adsb.readADC_SingleEnded(0) + 800);
TH5 = (adsb.readADC_SingleEnded(1) + 800);
TH6 = (adsb.readADC_SingleEnded(2) + 800);
TH7 = (adsb.readADC_SingleEnded(3) + 800);
TH8 = (adsc.readADC_SingleEnded(0) + 800);
TH9 = (adsc.readADC_SingleEnded(1) + 800);
TH10 = (adsc.readADC_SingleEnded(2) + 800);
TH11 = (adsc.readADC_SingleEnded(3) + 800);
TH12 = (adsd.readADC_SingleEnded(0) + 800);
TH13 = (adsd.readADC_SingleEnded(1) + 800);
TH14 = (adsd.readADC_SingleEnded(2) + 800);
TH15 = (adsd.readADC_SingleEnded(3) + 800);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.print ("TH10=");
Serial.println (TH10);
Serial.print ("TH11=");
Serial.println (TH11);
Serial.print ("TH12=");
Serial.println (TH12);
Serial.print ("TH13=");
Serial.println (TH13);
Serial.print ("TH14=");
Serial.println (TH14);
Serial.print ("TH15=");
Serial.println (TH15);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
Insta.setFreq(165);
Insta.setPhase(0);
Instb.setFreq(196);
Instb.setPhase(30);
Instc.setFreq(220);
Instc.setPhase(60);
Instd.setFreq(262);
Instd.setPhase(90);
Inste.setFreq(330);
Inste.setPhase(120);
Instf.setFreq(392);
Instf.setPhase(150);
Instg.setFreq(440);
Instg.setPhase(180);
Insth.setFreq(523);
Insth.setPhase(210);
Insti.setFreq(659);
Insti.setPhase(240);
Instj.setFreq(784);
Instj.setPhase(270);
Instk.setFreq(880);
Instk.setPhase(300);
Instl.setFreq(1047);
Instl.setPhase(330);
Instm.setFreq(659);
Instm.setPhase(240);
Instn.setFreq(784);
Instn.setPhase(270);
Insto.setFreq(880);
Insto.setPhase(300);
Instp.setFreq(1047);
Instp.setPhase(330);
envelope1.setADLevels(ATTACK_LEVEL,DECAY_LEVEL);
envelope1.setTimes(ATTACK,DECAY,SUSTAIN,RELEASE);
//
// Insta.begin(CHA, TRIANGLE, ENVELOPE2, 0);
// Instb.begin(TRIANGLE, ENVELOPE2, 0);
// Instc.begin(TRIANGLE, ENVELOPE2, 0);
// Instd.begin(TRIANGLE, ENVELOPE2, 0);
// Inste.begin(TRIANGLE, ENVELOPE2, 0);
// Instf.begin(TRIANGLE, ENVELOPE2, 0);
// Instg.begin(TRIANGLE, ENVELOPE2, 0);
// Insth.begin(TRIANGLE, ENVELOPE2, 0);
// Insti.begin(TRIANGLE, ENVELOPE2, 0);
// Instj.begin(TRIANGLE, ENVELOPE2, 0);
// Instk.begin(TRIANGLE, ENVELOPE2, 0);
// Instl.begin(TRIANGLE, ENVELOPE2, 0);
// Instm.begin(TRIANGLE, ENVELOPE2, 0);
// Instn.begin(TRIANGLE, ENVELOPE2, 0);
// Insto.begin(TRIANGLE, ENVELOPE2, 0);
// Instp.begin(TRIANGLE, ENVELOPE2, 0);
//
// Insta.pause(true);
// Instb.pause(true);
// Instc.pause(true);
// Instd.pause(true);
// Inste.pause(true);
// Instf.pause(true);
// Instg.pause(true);
// Insth.pause(true);
// Insti.pause(true);
// Instj.pause(true);
// Instk.pause(true);
// Instl.pause(true);
// Instm.pause(true);
// Instn.pause(true);
// Insto.pause(true);
// Instp.pause(true);
startMozzi(CONTROL_RATE);
Serial.println("go!");
}
void updateControl(){
if (VA0 > TH0) {
count++;
ZER = true;
if (CV) {
digitalWrite(0, HIGH);
}
else if (!CV) {
digitalWrite(0, LOW);
}
}
else if (VA0 < TH0) {
ZER = false;
//Kill ControlVoltage
digitalWrite(0, LOW);
}
if (VA1 > TH1) {
count++;
ONE = true;
if (CV) {
digitalWrite(1, HIGH);
}
else if (!CV) {
digitalWrite(1, LOW);
}
}
else if (VA1 < TH1) {
ONE = false;
//Kill ControlVoltage
digitalWrite(1, LOW);
}
if (VA2 > TH2) {
count++;
TWO = true;
if (CV) {
digitalWrite(2, HIGH);
}
else if (!CV) {
digitalWrite(2, LOW);
}
}
else if (VA2 < TH2) {
TWO = false;
//Kill ControlVoltage
digitalWrite(2, LOW);
}
if (VA3 > TH3) {
count++;
THR = true;
if (CV) {
digitalWrite(3, HIGH);
}
else if (!CV) {
digitalWrite(3, LOW);
}
}
else if (VA3 < TH3) {
THR = false;
//Kill ControlVoltage
digitalWrite(3, LOW);
}
if (VA4 > TH4) {
count++;
FOU = true;
if (CV) {
digitalWrite(4, HIGH);
}
else if (!CV) {
digitalWrite(4, LOW);
}
}
else if (VA4 < TH4) {
FOU = false;
//Kill ControlVoltage
digitalWrite(4, LOW);
}
if (VA5 > TH5) {
if (CV) {
digitalWrite(5, HIGH);
}
else if (!CV) {
digitalWrite(5, LOW);
}
count++;
FIV = true;
}
else if (VA5 < TH5) {
FIV = false;
//Kill ControlVoltage
digitalWrite(5, LOW);
}
if (VA6 > TH6) {
count++;
SIX = true;
if (CV) {
digitalWrite(6, HIGH);
}
else if (!CV) {
digitalWrite(6, LOW);
}
}
else if (VA6 < TH6) {
SIX = false;
//Kill ControlVoltage
digitalWrite(6, LOW);
}
if (VA7 > TH7) {
count++;
SEV = true;
if (CV) {
digitalWrite(7, HIGH);
}
else if (!CV) {
digitalWrite(7, LOW);
}
}
else if (VA7 < TH7) {
SEV = false;
//Kill ControlVoltage
digitalWrite(7, LOW);
}
if (VA8 > TH8) {
count++;
EIG = true;
if (CV) {
digitalWrite(8, HIGH);
}
else if (!CV) {
digitalWrite(8, LOW);
}
}
else if (VA8 < TH8) {
EIG = false;
//Kill ControlVoltage
digitalWrite(8, LOW);
}
if (VA9 > TH9) {
count++;
NIN = true;
if (CV) {
digitalWrite(9, HIGH);
}
else if (!CV) {
digitalWrite(9, LOW);
}
}
else if (VA9 < TH9) {
NIN = false;
//Kill ControlVoltage
digitalWrite(9, LOW);
}
if (VA10 > TH10) {
count++;
TEN = true;
if (CV) {
digitalWrite(10, HIGH);
}
else if (!CV) {
digitalWrite(10, LOW);
}
}
else if (VA10 < TH10) {
TEN = false;
//Kill ControlVoltage
digitalWrite(10, LOW);
}
if (VA11 > TH11) {
count++;
ELE = true;
if (CV) {
digitalWrite(11, HIGH);
}
else if (!CV) {
digitalWrite(11, LOW);
}
}
else if (VA11 < TH11) {
ELE = false;
//Kill ControlVoltage
digitalWrite(11, LOW);
}
if (VA12 > TH12) {
count++;
TWE = true;
if (CV) {
digitalWrite(12, HIGH);
}
else if (!CV) {
digitalWrite(12, LOW);
}
}
else if (VA12 < TH12) {
TWE = false;
//Kill ControlVoltage
digitalWrite(12, LOW);
}
if (VA13 > TH13) {
count++;
THT = true;
if (CV) {
digitalWrite(13, HIGH);
}
else if (!CV) {
digitalWrite(13, LOW);
}
}
else if (VA13 < TH13) {
THT = false;
//Kill ControlVoltage
digitalWrite(13, LOW);
}
if (VA14 > TH14) {
count++;
FOT = true;
if (CV) {
digitalWrite(14, HIGH);
}
else if (!CV) {
digitalWrite(14, LOW);
}
}
else if (VA14 < TH14) {
FOT = false;
//Kill ControlVoltage
digitalWrite(14, LOW);
}
if (VA15 > TH15) {
count++;
FIT = true;
if (CV) {
digitalWrite(15, HIGH);
}
else if (!CV) {
digitalWrite(15, LOW);
}
}
else if (VA15 < TH15) {
FIT = false;
//Kill ControlVoltage
digitalWrite(15, LOW);
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
}
int updateAudio(){
int result = 0;
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
//envelope1.update();
//return Insta.noteOn());
return (Insta) (envelope1.noteOn());
}
if (!ZER) {
envelope1.noteOff();
}
if (ONE) {
// VOL1 = 50/count+constrain(map(VA1, TH1, TH1+5000, 0, 65), 0, 65);
result += Instb.next();
}
if (!ONE) {
}
if (TWO) {
result += Instc.next();
}
if (!TWO) {
}
if (THR) {
result += Instd.next();
}
if (!THR) {
}
if (FOU) {
result += Inste.next();
}
if (!FOU) {
}
if (FIV) {
result += Instf.next();
}
if (!FIV) {
}
if (SIX) {
result += Instg.next();
}
if (!SIX) {
}
if (SEV) {
result += Insth.next();
}
if (!SEV) {
}
if (EIG) {
result += Insti.next();
}
if (!EIG) {
}
if (NIN) {
result += Instj.next();
}
if (!NIN) {
}
if (TEN) {
result += Instk.next();
}
if (!TEN) {
}
if (ELE) {
result += Instl.next();
}
if (!ELE) {
}
if (TWE) {
result += Instm.next();
}
if (!TWE) {
}
if (THT) {
result += Instn.next();
}
if (!THT) {
}
if (FOT) {
result += Insto.next();
}
if (!FOT) {
}
if (FIT) {
result += Instp.next();
}
if (!FIT) {
}
return;
}
void loop() {
CV = digitalRead(22);
count = 0;
// Insta.update();
// Instb.update();
// Instc.update();
// Instd.update();
// Inste.update();
// Instf.update();
// Instg.update();
// Insth.update();
// Insti.update();
// Instj.update();
// Instk.update();
// Instl.update();
// Instm.update();
// Instn.update();
// Insto.update();
// Instp.update();
//Messure LDR inputs
VA0 = adsa.readADC_SingleEnded(0);
VA1 = adsa.readADC_SingleEnded(1);
VA2 = adsa.readADC_SingleEnded(2);
VA3 = adsa.readADC_SingleEnded(3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = adsb.readADC_SingleEnded(0);
VA5 = adsb.readADC_SingleEnded(1);
VA6 = adsb.readADC_SingleEnded(2);
VA7 = adsb.readADC_SingleEnded(3);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = adsc.readADC_SingleEnded(0);
VA9 = adsc.readADC_SingleEnded(1);
VA10 = adsc.readADC_SingleEnded(2);
VA11 = adsc.readADC_SingleEnded(3);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.print("VA10: "); Serial.println(VA10);
// Serial.print("VA11: "); Serial.println(VA11);
// Serial.println(" ");
VA12 = adsd.readADC_SingleEnded(0);
VA13 = adsd.readADC_SingleEnded(1);
VA14 = adsd.readADC_SingleEnded(2);
VA15 = adsd.readADC_SingleEnded(3);
// Serial.print("VA12: "); Serial.println(VA12);
// Serial.print("VA13: "); Serial.println(VA13);
// Serial.print("VA14: "); Serial.println(VA14);
// Serial.print("VA15: "); Serial.println(VA15);
// Serial.println(" ");
audioHook();
}

@ -0,0 +1,773 @@
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
const char note0[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note1[] PROGMEM = ":d=128,b=300:d-1+"; //plays d4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:a-1+"; //plays a4
const char note5[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note6[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note7[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:c+1+"; //plays c6
const char note11[] PROGMEM = ":d=128,b=300:d+1+"; //plays d6
const char note12[] PROGMEM = ":d=128,b=300:e+1+"; //plays e6
const char note13[] PROGMEM = ":d=128,b=300:g+1+"; //plays g6
const char note14[] PROGMEM = ":d=128,b=300:a+1+"; //plays a6
const char note15[] PROGMEM = ":d=128,b=300:c+2+"; //plays c7
//instruments
MusicWithoutDelay Insta(note0);
MusicWithoutDelay Instb(note1);
MusicWithoutDelay Instc(note2);
MusicWithoutDelay Instd(note3);
MusicWithoutDelay Inste(note4);
MusicWithoutDelay Instf(note5);
MusicWithoutDelay Instg(note6);
MusicWithoutDelay Insth(note7);
MusicWithoutDelay Insti(note8);
MusicWithoutDelay Instj(note9);
MusicWithoutDelay Instk(note10);
MusicWithoutDelay Instl(note11);
MusicWithoutDelay Instm(note12);
MusicWithoutDelay Instn(note13);
MusicWithoutDelay Insto(note14);
MusicWithoutDelay Instp(note15);
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9, VA10, VA11, VA12, VA13, VA14, VA15;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12, TH13, TH14, TH15;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9, VOL10, VOL11, VOL12, VOL13, VOL14, VOL15;
bool CV;
bool ZER;
bool ONE;
bool TWO;
bool THR;
bool FOU;
bool FIV;
bool SIX;
bool SEV;
bool EIG;
bool NIN;
bool TEN;
bool ELE;
bool TWE;
bool THT;
bool FOT;
bool FIT;
void setup() {
Serial.begin(115200);
//set the gain for multiplexed INs
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
Serial.println("Ini MPX ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("MPX Ini");
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (adsa.readADC_SingleEnded(0) + 800);
TH1 = (adsa.readADC_SingleEnded(1) + 800);
TH2 = (adsa.readADC_SingleEnded(2) + 800);
TH3 = (adsa.readADC_SingleEnded(3) + 800);
TH4 = (adsb.readADC_SingleEnded(0) + 800);
TH5 = (adsb.readADC_SingleEnded(1) + 800);
TH6 = (adsb.readADC_SingleEnded(2) + 800);
TH7 = (adsb.readADC_SingleEnded(3) + 800);
TH8 = (adsc.readADC_SingleEnded(0) + 800);
TH9 = (adsc.readADC_SingleEnded(1) + 800);
TH10 = (adsc.readADC_SingleEnded(2) + 800);
TH11 = (adsc.readADC_SingleEnded(3) + 800);
TH12 = (adsd.readADC_SingleEnded(0) + 800);
TH13 = (adsd.readADC_SingleEnded(1) + 800);
TH14 = (adsd.readADC_SingleEnded(2) + 800);
TH15 = (adsd.readADC_SingleEnded(3) + 800);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.print ("TH10=");
Serial.println (TH10);
Serial.print ("TH11=");
Serial.println (TH11);
Serial.print ("TH12=");
Serial.println (TH12);
Serial.print ("TH13=");
Serial.println (TH13);
Serial.print ("TH14=");
Serial.println (TH14);
Serial.print ("TH15=");
Serial.println (TH15);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
Insta.begin(CHA, TRIANGLE, ENVELOPE0, 0);
Instb.begin(TRIANGLE, ENVELOPE0, 0);
Instc.begin(TRIANGLE, ENVELOPE0, 0);
Instd.begin(TRIANGLE, ENVELOPE0, 0);
Inste.begin(TRIANGLE, ENVELOPE0, 0);
Instf.begin(TRIANGLE, ENVELOPE0, 0);
Instg.begin(TRIANGLE, ENVELOPE0, 0);
Insth.begin(TRIANGLE, ENVELOPE0, 0);
Insti.begin(TRIANGLE, ENVELOPE0, 0);
Instj.begin(TRIANGLE, ENVELOPE0, 0);
Instk.begin(TRIANGLE, ENVELOPE0, 0);
Instl.begin(TRIANGLE, ENVELOPE0, 0);
Instm.begin(TRIANGLE, ENVELOPE0, 0);
Instn.begin(TRIANGLE, ENVELOPE0, 0);
Insto.begin(TRIANGLE, ENVELOPE0, 0);
Instp.begin(TRIANGLE, ENVELOPE0, 0);
Insta.pause(true);
Instb.pause(true);
Instc.pause(true);
Instd.pause(true);
Inste.pause(true);
Instf.pause(true);
Instg.pause(true);
Insth.pause(true);
Insti.pause(true);
Instj.pause(true);
Instk.pause(true);
Instl.pause(true);
Instm.pause(true);
Instn.pause(true);
Insto.pause(true);
Instp.pause(true);
Serial.println("go!");
}
void loop() {
CV = digitalRead(22);
count = 0;
Insta.update();
Instb.update();
Instc.update();
Instd.update();
Inste.update();
Instf.update();
Instg.update();
Insth.update();
Insti.update();
Instj.update();
Instk.update();
Instl.update();
Instm.update();
Instn.update();
Insto.update();
Instp.update();
//Messure LDR inputs
VA0 = adsa.readADC_SingleEnded(0);
VA1 = adsa.readADC_SingleEnded(1);
VA2 = adsa.readADC_SingleEnded(2);
VA3 = adsa.readADC_SingleEnded(3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = adsb.readADC_SingleEnded(0);
VA5 = adsb.readADC_SingleEnded(1);
VA6 = adsb.readADC_SingleEnded(2);
VA7 = adsb.readADC_SingleEnded(3);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = adsc.readADC_SingleEnded(0);
VA9 = adsc.readADC_SingleEnded(1);
VA10 = adsc.readADC_SingleEnded(2);
VA11 = adsc.readADC_SingleEnded(3);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.print("VA10: "); Serial.println(VA10);
// Serial.print("VA11: "); Serial.println(VA11);
// Serial.println(" ");
VA12 = adsd.readADC_SingleEnded(0);
VA13 = adsd.readADC_SingleEnded(1);
VA14 = adsd.readADC_SingleEnded(2);
VA15 = adsd.readADC_SingleEnded(3);
// Serial.print("VA12: "); Serial.println(VA12);
// Serial.print("VA13: "); Serial.println(VA13);
// Serial.print("VA14: "); Serial.println(VA14);
// Serial.print("VA15: "); Serial.println(VA15);
// Serial.println(" ");
if (VA0 > TH0) {
count++;
ZER = true;
}
else if (VA0 < TH0) {
ZER = false;
}
if (VA1 > TH1) {
count++;
ONE = true;
}
else if (VA1 < TH1) {
ONE = false;
}
if (VA2 > TH2) {
count++;
TWO = true;
}
else if (VA2 < TH2) {
TWO = false;
}
if (VA3 > TH3) {
count++;
THR = true;
}
else if (VA3 < TH3) {
THR = false;
}
if (VA4 > TH4) {
count++;
FOU = true;
}
else if (VA4 < TH4) {
FOU = false;
}
if (VA5 > TH5) {
count++;
FIV = true;
}
else if (VA5 < TH5) {
FIV = false;
}
if (VA6 > TH6) {
count++;
SIX = true;
}
else if (VA6 < TH6) {
SIX = false;
}
if (VA7 > TH7) {
count++;
SEV = true;
}
else if (VA7 < TH7) {
SEV = false;
}
if (VA8 > TH8) {
count++;
EIG = true;
}
else if (VA8 < TH8) {
EIG = false;
}
if (VA9 > TH9) {
count++;
NIN = true;
}
else if (VA9 < TH9) {
NIN = false;
}
if (VA10 > TH10) {
count++;
TEN = true;
}
else if (VA10 < TH10) {
TEN = false;
}
if (VA11 > TH11) {
count++;
ELE = true;
}
else if (VA11 < TH11) {
ELE = false;
}
if (VA12 > TH12) {
count++;
TWE = true;
}
else if (VA12 < TH12) {
TWE = false;
}
if (VA13 > TH13) {
count++;
THT = true;
}
else if (VA13 < TH13) {
THT = false;
}
if (VA14 > TH14) {
count++;
FOT = true;
}
else if (VA14 < TH14) {
FOT = false;
}
if (VA15 > TH15) {
count++;
FIT = true;
}
else if (VA15 < TH15) {
FIT = false;
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
VOL0 = 50/count+constrain(map(VA0, TH0, TH0+5000, 0, 65), 0, 65);
Insta.play(true);
Insta.setVolume(VOL0);
// Serial.print("Tone0 active at vol:");
// Serial.println(VOL0);
// Serial.println(VA0);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(0, HIGH);
}
else if (!CV) {
digitalWrite(0, LOW);
}
}
if (!ZER) {
Insta.pause (true);
//Kill ControlVoltage
digitalWrite(0, LOW);
}
if (ONE) {
VOL1 = 50/count+constrain(map(VA1, TH1, TH1+5000, 0, 65), 0, 65);
Instb.play(true);
Instb.setVolume(VOL1);
// Serial.print("Tone1 active at vol:");
// Serial.println(VOL1);
// Serial.println(VA1);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(1, HIGH);
}
else if (!CV) {
digitalWrite(1, LOW);
}
}
if (!ONE) {
Instb.pause (true);
//Kill ControlVoltage
digitalWrite(1, LOW);
}
if (TWO) {
VOL2 = 50/count+constrain(map(VA2, TH2, TH2+5000, 0, 65), 0, 65);
Instc.play(true);
Instc.setVolume(VOL2);
// Serial.print("Tone2 active at vol:");
// Serial.println(VOL2);
// Serial.println(VA2);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(2, HIGH);
}
else if (!CV) {
digitalWrite(2, LOW);
}
}
if (!TWO) {
Instc.pause (true);
//Kill ControlVoltage
digitalWrite(2, LOW);
}
if (THR) {
VOL3 = 50/count+constrain(map(VA3, TH3, TH3+5000, 0, 65), 0, 65);
Instd.play(true);
Instd.setVolume(VOL3);
// Serial.print("Tone3 active at vol:");
// Serial.println(VOL3);
// Serial.println(VA3);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(3, HIGH);
}
else if (!CV) {
digitalWrite(3, LOW);
}
}
if (!THR) {
Instd.pause (true);
//Kill ControlVoltage
digitalWrite(3, LOW);
}
if (FOU) {
VOL4 = 50/count+constrain(map(VA4, TH4, TH4+5000, 0, 65), 0, 65);
Inste.play(true);
Inste.setVolume(VOL4);
// Serial.print("Tone4 active at vol:");
// Serial.println(VOL4);
// Serial.println(VA4);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(4, HIGH);
}
else if (!CV) {
digitalWrite(4, LOW);
}
}
if (!FOU) {
Inste.pause (true);
//Kill ControlVoltage
digitalWrite(4, LOW);
}
if (FIV) {
VOL5 = 50/count+constrain(map(VA5, TH5, TH5+5000, 0, 65), 0, 65);
Instf.play(true);
Instf.setVolume(VOL5);
// Serial.print("Tone5 active at vol:");
// Serial.println(VOL5);
// Serial.println(VA5);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(5, HIGH);
}
else if (!CV) {
digitalWrite(5, LOW);
}
}
if (!FIV) {
Instf.pause (true);
//Kill ControlVoltage
digitalWrite(5, LOW);
}
if (SIX) {
VOL6 = 50/count+constrain(map(VA6, TH6, TH6+5000, 0, 65), 0, 65);
Instg.play(true);
Instg.setVolume(VOL6);
// Serial.print("Tone6 active at vol:");
// Serial.println(VOL6);
// Serial.println(VA6);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(6, HIGH);
}
else if (!CV) {
digitalWrite(6, LOW);
}
}
if (!SIX) {
Instg.pause (true);
//Kill ControlVoltage
digitalWrite(6, LOW);
}
if (SEV) {
VOL7 = 50/count+constrain(map(VA7, TH7, TH7+5000, 0, 65), 0, 65);
Insth.play(true);
Insth.setVolume(VOL7);
// Serial.print("Tone7 active at vol:");
// Serial.println(VOL7);
// Serial.println(VA7);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(7, HIGH);
}
else if (!CV) {
digitalWrite(7, LOW);
}
}
if (!SEV) {
Insth.pause (true);
//Kill ControlVoltage
digitalWrite(7, LOW);
}
if (EIG) {
VOL8 = 50/count+constrain(map(VA8, TH8, TH8+5000, 0, 65), 0, 65);
Insti.play(true);
Insti.setVolume(VOL8);
// Serial.print("Tone8 active at vol:");
// Serial.println(VOL8);
// Serial.println(VA8);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(8, HIGH);
}
else if (!CV) {
digitalWrite(8, LOW);
}
}
if (!EIG) {
Insti.pause (true);
//Kill ControlVoltage
digitalWrite(8, LOW);
}
if (NIN) {
VOL9 = 50/count+constrain(map(VA9, TH9, TH9+5000, 0, 65), 0, 65);
Instj.play(true);
Instj.setVolume(VOL9);
// Serial.print("Tone9 active at vol:");
// Serial.println(VOL9);
// Serial.println(VA9);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(9, HIGH);
}
else if (!CV) {
digitalWrite(9, LOW);
}
}
if (!NIN) {
Instk.pause (true);
//Kill ControlVoltage
digitalWrite(9, LOW);
}
if (TEN) {
VOL10 = 50/count+constrain(map(VA10, TH10, TH10+5000, 0, 65), 0, 65);
Instk.play(true);
Instk.setVolume(VOL10);
// Serial.print("Tone10 active at vol:");
// Serial.println(VOL10);
// Serial.println(VA10);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(10, HIGH);
}
else if (!CV) {
digitalWrite(10, LOW);
}
}
if (!TEN) {
Instk.pause (true);
//Kill ControlVoltage
digitalWrite(10, LOW);
}
if (ELE) {
VOL11 = 50/count+constrain(map(VA11, TH11, TH11+5000, 0, 65), 0, 65);
Instl.play(true);
Instl.setVolume(VOL11);
// Serial.print("Tone11 active at vol:");
// Serial.println(VOL11);
// Serial.println(VA11);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(11, HIGH);
}
else if (!CV) {
digitalWrite(11, LOW);
}
}
if (!ELE) {
Instl.pause (true);
//Kill ControlVoltage
digitalWrite(11, LOW);
}
if (TWE) {
VOL12 = 50/count+constrain(map(VA12, TH12, TH12+5000, 0, 65), 0, 65);
Instm.play(true);
Instm.setVolume(VOL12);
// Serial.print("Tone12 active at vol:");
// Serial.println(VOL12);
// Serial.println(VA12);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(12, HIGH);
}
else if (!CV) {
digitalWrite(12, LOW);
}
}
if (!TWE) {
Instm.pause (true);
//Kill ControlVoltage
digitalWrite(12, LOW);
}
if (THT) {
VOL13 = 50/count+constrain(map(VA13, TH13, TH13+5000, 0, 65), 0, 65);
Instn.play(true);
Instn.setVolume(VOL13);
// Serial.print("Tone13 active at vol:");
// Serial.println(VOL13);
// Serial.println(VA13);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(13, HIGH);
}
else if (!CV) {
digitalWrite(13, LOW);
}
}
if (!THT) {
Instn.pause (true);
//Kill ControlVoltage
digitalWrite(13, LOW);
}
if (FOT) {
VOL14 = 50/count+constrain(map(VA14, TH14, TH14+5000, 0, 65), 0, 65);
Insto.play(true);
Insto.setVolume(VOL14);
// Serial.print("Tone14 active at vol:");
// Serial.println(VOL14);
// Serial.println(VA14);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(14, HIGH);
}
else if (!CV) {
digitalWrite(14, LOW);
}
}
if (!FOT) {
Insto.pause (true);
//Kill ControlVoltage
digitalWrite(14, LOW);
}
if (FIT) {
VOL15 = 50/count+constrain(map(VA15, TH15, TH15+5000, 0, 65), 0, 65);
Instp.play(true);
Instp.setVolume(VOL15);
// Serial.print("Tone15 active at vol:");
// Serial.println(VOL15);
// Serial.println(VA15);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(15, HIGH);
}
else if (!CV) {
digitalWrite(15, LOW);
}
}
if (!FIT) {
Instp.pause (true);
//Kill ControlVoltage
digitalWrite(15, LOW);
}
}

@ -0,0 +1,747 @@
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
const char note0[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note1[] PROGMEM = ":d=128,b=300:d-1+"; //plays d4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:a-1+"; //plays a4
const char note5[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note6[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note7[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:c+1+"; //plays c6
const char note11[] PROGMEM = ":d=128,b=300:d+1+"; //plays d6
const char note12[] PROGMEM = ":d=128,b=300:e+1+"; //plays e6
const char note13[] PROGMEM = ":d=128,b=300:g+1+"; //plays g6
const char note14[] PROGMEM = ":d=128,b=300:a+1+"; //plays a6
const char note15[] PROGMEM = ":d=128,b=300:c+2+"; //plays c7
//instruments
MusicWithoutDelay Insta(note0);
MusicWithoutDelay Instb(note1);
MusicWithoutDelay Instc(note2);
MusicWithoutDelay Instd(note3);
MusicWithoutDelay Inste(note4);
MusicWithoutDelay Instf(note5);
MusicWithoutDelay Instg(note6);
MusicWithoutDelay Insth(note7);
MusicWithoutDelay Insti(note8);
MusicWithoutDelay Instj(note9);
MusicWithoutDelay Instk(note10);
MusicWithoutDelay Instl(note11);
MusicWithoutDelay Instm(note12);
MusicWithoutDelay Instn(note13);
MusicWithoutDelay Insto(note14);
MusicWithoutDelay Instp(note15);
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9, VA10, VA11, VA12, VA13, VA14, VA15;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12, TH13, TH14, TH15;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9, VOL10, VOL11, VOL12, VOL13, VOL14, VOL15;
bool CV;
int ZER;
int ONE;
int TWO;
int THR;
int FOU;
int FIV;
int SIX;
int SEV;
int EIG;
int NIN;
int TEN;
int ELE;
int TWE;
int THT;
int FOT;
int FIT;
void setup() {
Serial.begin(115200);
//set the gain for multiplexed INs
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
Serial.println("Ini MPX ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("MPX Ini");
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
calib();
Insta.begin(CHA, TRIANGLE, ENVELOPE2, 0);
Instb.begin(TRIANGLE, ENVELOPE2, 0);
Instc.begin(TRIANGLE, ENVELOPE2, 0);
Instd.begin(TRIANGLE, ENVELOPE2, 0);
Inste.begin(TRIANGLE, ENVELOPE2, 0);
Instf.begin(TRIANGLE, ENVELOPE2, 0);
Instg.begin(TRIANGLE, ENVELOPE2, 0);
Insth.begin(TRIANGLE, ENVELOPE2, 0);
Insti.begin(TRIANGLE, ENVELOPE2, 0);
Instj.begin(TRIANGLE, ENVELOPE2, 0);
Instk.begin(TRIANGLE, ENVELOPE2, 0);
Instl.begin(TRIANGLE, ENVELOPE2, 0);
Instm.begin(TRIANGLE, ENVELOPE2, 0);
Instn.begin(TRIANGLE, ENVELOPE2, 0);
Insto.begin(TRIANGLE, ENVELOPE2, 0);
Instp.begin(TRIANGLE, ENVELOPE2, 0);
Insta.pause(true);
Instb.pause(true);
Instc.pause(true);
Instd.pause(true);
Inste.pause(true);
Instf.pause(true);
Instg.pause(true);
Insth.pause(true);
Insti.pause(true);
Instj.pause(true);
Instk.pause(true);
Instl.pause(true);
Instm.pause(true);
Instn.pause(true);
Insto.pause(true);
Instp.pause(true);
Serial.println("go!");
}
void calib() {
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (adsa.readADC_SingleEnded(0) + 800);
TH1 = (adsa.readADC_SingleEnded(1) + 800);
TH2 = (adsa.readADC_SingleEnded(2) + 800);
TH3 = (adsa.readADC_SingleEnded(3) + 800);
TH4 = (adsb.readADC_SingleEnded(0) + 800);
TH5 = (adsb.readADC_SingleEnded(1) + 800);
TH6 = (adsb.readADC_SingleEnded(2) + 800);
TH7 = (adsb.readADC_SingleEnded(3) + 800);
TH8 = (adsc.readADC_SingleEnded(0) + 800);
TH9 = (adsc.readADC_SingleEnded(1) + 800);
TH10 = (adsc.readADC_SingleEnded(2) + 800);
TH11 = (adsc.readADC_SingleEnded(3) + 800);
TH12 = (adsd.readADC_SingleEnded(0) + 800);
TH13 = (adsd.readADC_SingleEnded(1) + 800);
TH14 = (adsd.readADC_SingleEnded(2) + 800);
TH15 = (adsd.readADC_SingleEnded(3) + 800);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.print ("TH10=");
Serial.println (TH10);
Serial.print ("TH11=");
Serial.println (TH11);
Serial.print ("TH12=");
Serial.println (TH12);
Serial.print ("TH13=");
Serial.println (TH13);
Serial.print ("TH14=");
Serial.println (TH14);
Serial.print ("TH15=");
Serial.println (TH15);
}
void loop() {
CV = digitalRead(17);
count = 0;
Insta.update();
Instb.update();
Instc.update();
Instd.update();
Inste.update();
Instf.update();
Instg.update();
Insth.update();
Insti.update();
Instj.update();
Instk.update();
Instl.update();
Instm.update();
Instn.update();
Insto.update();
Instp.update();
//Messure LDR inputs
VA0 = adsa.readADC_SingleEnded(0);
VA1 = adsa.readADC_SingleEnded(1);
VA2 = adsa.readADC_SingleEnded(2);
VA3 = adsa.readADC_SingleEnded(3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = adsb.readADC_SingleEnded(0);
VA5 = adsb.readADC_SingleEnded(1);
VA6 = adsb.readADC_SingleEnded(2);
VA7 = adsb.readADC_SingleEnded(3);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = adsc.readADC_SingleEnded(0);
VA9 = adsc.readADC_SingleEnded(1);
VA10 = adsc.readADC_SingleEnded(2);
VA11 = adsc.readADC_SingleEnded(3);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.print("VA10: "); Serial.println(VA10);
// Serial.print("VA11: "); Serial.println(VA11);
// Serial.println(" ");
VA12 = adsd.readADC_SingleEnded(0);
VA13 = adsd.readADC_SingleEnded(1);
VA14 = adsd.readADC_SingleEnded(2);
VA15 = adsd.readADC_SingleEnded(3);
// Serial.print("VA12: "); Serial.println(VA12);
// Serial.print("VA13: "); Serial.println(VA13);
// Serial.print("VA14: "); Serial.println(VA14);
// Serial.print("VA15: "); Serial.println(VA15);
// Serial.println(" ");
if (VA0 > TH0) {
count++;
ZER = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(0, HIGH);
}
else if (!CV) {
digitalWrite(0, LOW);
}
}
else if (VA0 < TH0) {
ZER = false;
//Kill ControlVoltage
digitalWrite(0, LOW);
}
if (VA1 > TH1) {
count++;
ONE = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(1, HIGH);
}
else if (!CV) {
digitalWrite(1, LOW);
}
}
else if (VA1 < TH1) {
ONE = false;
//Kill ControlVoltage
digitalWrite(1, LOW);
}
if (VA2 > TH2) {
count++;
TWO = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(2, HIGH);
}
else if (!CV) {
digitalWrite(2, LOW);
}
}
else if (VA2 < TH2) {
TWO = false;
//Kill ControlVoltage
digitalWrite(2, LOW);
}
if (VA3 > TH3) {
count++;
THR = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(4, HIGH);
}
else if (!CV) {
digitalWrite(4, LOW);
}
}
else if (VA3 < TH3) {
THR = false;
//Kill ControlVoltage
digitalWrite(4, LOW);
}
if (VA4 > TH4) {
count++;
FOU = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(5, HIGH);
}
else if (!CV) {
digitalWrite(5, LOW);
}
}
else if (VA4 < TH4) {
FOU = false;
//Kill ControlVoltage
digitalWrite(5, LOW);
}
if (VA5 > TH5) {
count++;
FIV = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(6, HIGH);
}
else if (!CV) {
digitalWrite(6, LOW);
}
}
else if (VA5 < TH5) {
FIV = false;
//Kill ControlVoltage
digitalWrite(6, LOW);
}
if (VA6 > TH6) {
count++;
SIX = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(7, HIGH);
}
else if (!CV) {
digitalWrite(7, LOW);
}
}
else if (VA6 < TH6) {
SIX = false;
//Kill ControlVoltage
digitalWrite(7, LOW);
}
if (VA7 > TH7) {
count++;
SEV = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(8, HIGH);
}
else if (!CV) {
digitalWrite(8, LOW);
}
}
else if (VA7 < TH7) {
SEV = false;
//Kill ControlVoltage
digitalWrite(8, LOW);
}
if (VA8 > TH8) {
count++;
EIG = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(9, HIGH);
}
else if (!CV) {
digitalWrite(9, LOW);
}
}
else if (VA8 < TH8) {
EIG = false;
//Kill ControlVoltage
digitalWrite(9, LOW);
}
if (VA9 > TH9) {
count++;
NIN = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(10, HIGH);
}
else if (!CV) {
digitalWrite(10, LOW);
}
}
else if (VA9 < TH9) {
NIN = false;
//Kill ControlVoltage
digitalWrite(10, LOW);
}
if (VA10 > TH10) {
count++;
TEN = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(11, HIGH);
}
else if (!CV) {
digitalWrite(11, LOW);
}
}
else if (VA10 < TH10) {
TEN = false;
//Kill ControlVoltage
digitalWrite(11, LOW);
}
if (VA11 > TH11) {
count++;
ELE = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(12, HIGH);
}
else if (!CV) {
digitalWrite(12, LOW);
}
}
else if (VA11 < TH11) {
ELE = false;
//Kill ControlVoltage
digitalWrite(12, LOW);
}
if (VA12 > TH12) {
count++;
TWE = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(13, HIGH);
}
else if (!CV) {
digitalWrite(13, LOW);
}
}
else if (VA12 < TH12) {
TWE = false;
//Kill ControlVoltage
digitalWrite(13, LOW);
}
if (VA13 > TH13) {
count++;
THT = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(14, HIGH);
}
else if (!CV) {
digitalWrite(14, LOW);
}
}
else if (VA13 < TH13) {
THT = false;
//Kill ControlVoltage
digitalWrite(14, LOW);
}
if (VA14 > TH14) {
count++;
FOT = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(15, HIGH);
}
else if (!CV) {
digitalWrite(15, LOW);
}
}
else if (VA14 < TH14) {
FOT = false;
//Kill ControlVoltage
digitalWrite(15, LOW);
}
if (VA15 > TH15) {
count++;
FIT = true;
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(16, HIGH);
}
else if (!CV) {
digitalWrite(16, LOW);
}
}
else if (VA15 < TH15) {
FIT = false;
//Kill ControlVoltage
digitalWrite(16, LOW);
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
VOL0 = 50/count+constrain(map(VA0, TH0, TH0+5000, 0, 65), 0, 65);
Insta.play(true);
Insta.setVolume(VOL0);
// Serial.print("Tone0 active at vol:");
// Serial.println(VOL0);
// Serial.println(VA0);
}
if (!ZER) {
Insta.pause (true);
}
if (ONE) {
VOL1 = 50/count+constrain(map(VA1, TH1, TH1+5000, 0, 65), 0, 65);
Instb.play(true);
Instb.setVolume(VOL1);
// Serial.print("Tone1 active at vol:");
// Serial.println(VOL1);
// Serial.println(VA1);
}
if (!ONE) {
Instb.pause (true);
}
if (TWO) {
VOL2 = 50/count+constrain(map(VA2, TH2, TH2+5000, 0, 65), 0, 65);
Instc.play(true);
Instc.setVolume(VOL2);
// Serial.print("Tone2 active at vol:");
// Serial.println(VOL2);
// Serial.println(VA2);
}
if (!TWO) {
Instc.pause (true);
}
if (THR) {
VOL3 = 50/count+constrain(map(VA3, TH3, TH3+5000, 0, 65), 0, 65);
Instd.play(true);
Instd.setVolume(VOL3);
// Serial.print("Tone3 active at vol:");
// Serial.println(VOL3);
// Serial.println(VA3);
}
if (!THR) {
Instd.pause (true);
}
if (FOU) {
VOL4 = 50/count+constrain(map(VA4, TH4, TH4+5000, 0, 65), 0, 65);
Inste.play(true);
Inste.setVolume(VOL4);
// Serial.print("Tone4 active at vol:");
// Serial.println(VOL4);
// Serial.println(VA4);
}
if (!FOU) {
Inste.pause (true);
}
if (FIV) {
VOL5 = 50/count+constrain(map(VA5, TH5, TH5+5000, 0, 65), 0, 65);
Instf.play(true);
Instf.setVolume(VOL5);
// Serial.print("Tone5 active at vol:");
// Serial.println(VOL5);
// Serial.println(VA5);
}
if (!FIV) {
Instf.pause (true);
}
if (SIX) {
VOL6 = 50/count+constrain(map(VA6, TH6, TH6+5000, 0, 65), 0, 65);
Instg.play(true);
Instg.setVolume(VOL6);
// Serial.print("Tone6 active at vol:");
// Serial.println(VOL6);
// Serial.println(VA6);
}
if (!SIX) {
Instg.pause (true);
}
if (SEV) {
VOL7 = 50/count+constrain(map(VA7, TH7, TH7+5000, 0, 65), 0, 65);
Insth.play(true);
Insth.setVolume(VOL7);
// Serial.print("Tone7 active at vol:");
// Serial.println(VOL7);
// Serial.println(VA7);
}
if (!SEV) {
Insth.pause (true);
}
if (EIG) {
VOL8 = 50/count+constrain(map(VA8, TH8, TH8+5000, 0, 65), 0, 65);
Insti.play(true);
Insti.setVolume(VOL8);
// Serial.print("Tone8 active at vol:");
// Serial.println(VOL8);
// Serial.println(VA8);
}
if (!EIG) {
Insti.pause (true);
}
if (NIN) {
VOL9 = 50/count+constrain(map(VA9, TH9, TH9+5000, 0, 65), 0, 65);
Instj.play(true);
Instj.setVolume(VOL9);
// Serial.print("Tone9 active at vol:");
// Serial.println(VOL9);
// Serial.println(VA9);
}
if (!NIN) {
Instk.pause (true);
}
if (TEN) {
VOL10 = 50/count+constrain(map(VA10, TH10, TH10+5000, 0, 65), 0, 65);
Instk.play(true);
Instk.setVolume(VOL10);
// Serial.print("Tone10 active at vol:");
// Serial.println(VOL10);
// Serial.println(VA10);
}
if (!TEN) {
Instk.pause (true);
}
if (ELE) {
VOL11 = 50/count+constrain(map(VA11, TH11, TH11+5000, 0, 65), 0, 65);
Instl.play(true);
Instl.setVolume(VOL11);
// Serial.print("Tone11 active at vol:");
// Serial.println(VOL11);
// Serial.println(VA11);
}
if (!ELE) {
Instl.pause (true);
}
if (TWE) {
VOL12 = 50/count+constrain(map(VA12, TH12, TH12+5000, 0, 65), 0, 65);
Instm.play(true);
Instm.setVolume(VOL12);
// Serial.print("Tone12 active at vol:");
// Serial.println(VOL12);
// Serial.println(VA12);
}
if (!TWE) {
Instm.pause (true);
}
if (THT) {
VOL13 = 50/count+constrain(map(VA13, TH13, TH13+5000, 0, 65), 0, 65);
Instn.play(true);
Instn.setVolume(VOL13);
// Serial.print("Tone13 active at vol:");
// Serial.println(VOL13);
// Serial.println(VA13);
}
if (!THT) {
Instn.pause (true);
}
if (FOT) {
VOL14 = 50/count+constrain(map(VA14, TH14, TH14+5000, 0, 65), 0, 65);
Insto.play(true);
Insto.setVolume(VOL14);
// Serial.print("Tone14 active at vol:");
// Serial.println(VOL14);
// Serial.println(VA14);
}
if (!FOT) {
Insto.pause (true);
}
if (FIT) {
VOL15 = 50/count+constrain(map(VA15, TH15, TH15+5000, 0, 65), 0, 65);
Instp.play(true);
Instp.setVolume(VOL15);
// Serial.print("Tone15 active at vol:");
// Serial.println(VOL15);
// Serial.println(VA15);
}
if (!FIT) {
Instp.pause (true);
}
}

@ -0,0 +1,766 @@
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
const char note0[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note1[] PROGMEM = ":d=128,b=300:d-1+"; //plays d4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:a-1+"; //plays a4
const char note5[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note6[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note7[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:c+1+"; //plays c6
const char note11[] PROGMEM = ":d=128,b=300:d+1+"; //plays d6
const char note12[] PROGMEM = ":d=128,b=300:e+1+"; //plays e6
const char note13[] PROGMEM = ":d=128,b=300:g+1+"; //plays g6
const char note14[] PROGMEM = ":d=128,b=300:a+1+"; //plays a6
const char note15[] PROGMEM = ":d=128,b=300:c+2+"; //plays c7
//instruments
MusicWithoutDelay Insta(note0);
MusicWithoutDelay Instb(note1);
MusicWithoutDelay Instc(note2);
MusicWithoutDelay Instd(note3);
MusicWithoutDelay Inste(note4);
MusicWithoutDelay Instf(note5);
MusicWithoutDelay Instg(note6);
MusicWithoutDelay Insth(note7);
MusicWithoutDelay Insti(note8);
MusicWithoutDelay Instj(note9);
MusicWithoutDelay Instk(note10);
MusicWithoutDelay Instl(note11);
MusicWithoutDelay Instm(note12);
MusicWithoutDelay Instn(note13);
MusicWithoutDelay Insto(note14);
MusicWithoutDelay Instp(note15);
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9, VA10, VA11, VA12, VA13, VA14, VA15;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12, TH13, TH14, TH15;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9, VOL10, VOL11, VOL12, VOL13, VOL14, VOL15;
bool CV;
int ZER;
int ONE;
int TWO;
int THR;
int FOU;
int FIV;
int SIX;
int SEV;
int EIG;
int NIN;
int TEN;
int ELE;
int TWE;
int THT;
int FOT;
int FIT;
void setup() {
Serial.begin(115200);
//set the gain for multiplexed INs
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
Serial.println("Ini MPX ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("MPX Ini");
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
calib();
Insta.begin(CHA, TRIANGLE, ENVELOPE2, 0);
Instb.begin(TRIANGLE, ENVELOPE2, 0);
Instc.begin(TRIANGLE, ENVELOPE2, 0);
Instd.begin(TRIANGLE, ENVELOPE2, 0);
Inste.begin(TRIANGLE, ENVELOPE2, 0);
Instf.begin(TRIANGLE, ENVELOPE2, 0);
Instg.begin(TRIANGLE, ENVELOPE2, 0);
Insth.begin(TRIANGLE, ENVELOPE2, 0);
Insti.begin(TRIANGLE, ENVELOPE2, 0);
Instj.begin(TRIANGLE, ENVELOPE2, 0);
Instk.begin(TRIANGLE, ENVELOPE2, 0);
Instl.begin(TRIANGLE, ENVELOPE2, 0);
Instm.begin(TRIANGLE, ENVELOPE2, 0);
Instn.begin(TRIANGLE, ENVELOPE2, 0);
Insto.begin(TRIANGLE, ENVELOPE2, 0);
Instp.begin(TRIANGLE, ENVELOPE2, 0);
Insta.pause(true);
Instb.pause(true);
Instc.pause(true);
Instd.pause(true);
Inste.pause(true);
Instf.pause(true);
Instg.pause(true);
Insth.pause(true);
Insti.pause(true);
Instj.pause(true);
Instk.pause(true);
Instl.pause(true);
Instm.pause(true);
Instn.pause(true);
Insto.pause(true);
Instp.pause(true);
Serial.println("go!");
}
void calib() {
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (adsa.readADC_SingleEnded(0) + 800);
TH1 = (adsa.readADC_SingleEnded(1) + 800);
TH2 = (adsa.readADC_SingleEnded(2) + 800);
TH3 = (adsa.readADC_SingleEnded(3) + 800);
TH4 = (adsb.readADC_SingleEnded(0) + 800);
TH5 = (adsb.readADC_SingleEnded(1) + 800);
TH6 = (adsb.readADC_SingleEnded(2) + 800);
TH7 = (adsb.readADC_SingleEnded(3) + 800);
TH8 = (adsc.readADC_SingleEnded(0) + 800);
TH9 = (adsc.readADC_SingleEnded(1) + 800);
TH10 = (adsc.readADC_SingleEnded(2) + 800);
TH11 = (adsc.readADC_SingleEnded(3) + 800);
TH12 = (adsd.readADC_SingleEnded(0) + 800);
TH13 = (adsd.readADC_SingleEnded(1) + 800);
TH14 = (adsd.readADC_SingleEnded(2) + 800);
TH15 = (adsd.readADC_SingleEnded(3) + 800);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.print ("TH10=");
Serial.println (TH10);
Serial.print ("TH11=");
Serial.println (TH11);
Serial.print ("TH12=");
Serial.println (TH12);
Serial.print ("TH13=");
Serial.println (TH13);
Serial.print ("TH14=");
Serial.println (TH14);
Serial.print ("TH15=");
Serial.println (TH15);
}
void loop() {
CV = digitalRead(20);
count = 0;
Insta.update();
Instb.update();
Instc.update();
Instd.update();
Inste.update();
Instf.update();
Instg.update();
Insth.update();
Insti.update();
Instj.update();
Instk.update();
Instl.update();
Instm.update();
Instn.update();
Insto.update();
Instp.update();
//Messure LDR inputs
VA0 = adsa.readADC_SingleEnded(0);
VA1 = adsa.readADC_SingleEnded(1);
VA2 = adsa.readADC_SingleEnded(2);
VA3 = adsa.readADC_SingleEnded(3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = adsb.readADC_SingleEnded(0);
VA5 = adsb.readADC_SingleEnded(1);
VA6 = adsb.readADC_SingleEnded(2);
VA7 = adsb.readADC_SingleEnded(3);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = adsc.readADC_SingleEnded(0);
VA9 = adsc.readADC_SingleEnded(1);
VA10 = adsc.readADC_SingleEnded(2);
VA11 = adsc.readADC_SingleEnded(3);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.print("VA10: "); Serial.println(VA10);
// Serial.print("VA11: "); Serial.println(VA11);
// Serial.println(" ");
VA12 = adsd.readADC_SingleEnded(0);
VA13 = adsd.readADC_SingleEnded(1);
VA14 = adsd.readADC_SingleEnded(2);
VA15 = adsd.readADC_SingleEnded(3);
// Serial.print("VA12: "); Serial.println(VA12);
// Serial.print("VA13: "); Serial.println(VA13);
// Serial.print("VA14: "); Serial.println(VA14);
// Serial.print("VA15: "); Serial.println(VA15);
// Serial.println(" ");
if (VA0 > TH0 && !CV) {
count++;
ZER = true;
digitalWrite(0, LOW);
}
else if (VA0 > TH0 && CV) {
ZER = false;
digitalWrite(0, HIGH);
}
else if (VA0 < TH0) {
ZER = false;
digitalWrite(0, LOW);
}
if (VA1 > TH1 && !CV) {
count++;
ONE = true;
digitalWrite(1, LOW);
}
else if (VA1 > TH1 && CV) {
digitalWrite(1, HIGH);
ONE = false;
}
else if (VA1 < TH1) {
ONE = false;
digitalWrite(1, LOW);
}
if (VA2 > TH2 && !CV) {
count++;
TWO = true;
digitalWrite(2, LOW);
}
else if (VA2 > TH2 && CV) {
TWO = false;
digitalWrite(2, HIGH);
}
else if (VA2 < TH2) {
TWO = false;
digitalWrite(2, LOW);
}
if (VA3 > TH3 && !CV) {
count++;
THR = true;
digitalWrite(4, LOW);
}
else if (VA3 > TH3 && CV) {
THR = false;
digitalWrite(4, HIGH);
}
else if (VA3 < TH3) {
THR = false;
digitalWrite(4, LOW);
}
if (VA4 > TH4 && !CV) {
count++;
FOU = true;
digitalWrite(5, LOW);
}
else if (VA4 > TH4 && CV) {
FOU = false;
digitalWrite(5, HIGH);
}
else if (VA4 < TH4) {
FOU = false;
digitalWrite(5, LOW);
}
if (VA5 > TH5 && !CV) {
count++;
FIV = true;
digitalWrite(6, LOW);
}
else if (VA5 > TH5 && CV) {
FIV = false;
digitalWrite(6, HIGH);
}
else if (VA5 < TH5) {
FIV = false;
digitalWrite(6, LOW);
}
if (VA6 > TH6 && !CV) {
count++;
SIX = true;
digitalWrite(7, LOW);
}
else if (VA6 > TH6 && CV) {
SIX = false;
digitalWrite(7, HIGH);
}
else if (VA6 < TH6) {
SIX = false;
digitalWrite(7, LOW);
}
if (VA7 > TH7 && !CV) {
count++;
SEV = true;
digitalWrite(8, LOW);
}
else if (VA7 > TH7 && CV) {
SEV = false;
digitalWrite(8, HIGH);
}
else if (VA7 < TH7) {
SEV = false;
digitalWrite(8, LOW);
}
if (VA8 > TH8 && !CV) {
count++;
EIG = true;
digitalWrite(9, LOW);
}
else if (VA8 > TH8 && CV) {
EIG = false;
digitalWrite(9, HIGH);
}
else if (VA8 < TH8) {
EIG = false;
digitalWrite(9, LOW);
}
if (VA9 > TH9 && !CV) {
count++;
NIN = true;
digitalWrite(10, LOW);
}
else if (VA9 > TH9 && CV) {
NIN = false;
digitalWrite(10, HIGH);
}
else if (VA9 < TH9) {
NIN = false;
digitalWrite(10, LOW);
}
if (VA10 > TH10 && !CV) {
count++;
TEN = true;
digitalWrite(11, LOW);
}
else if (VA10 > TH10 && CV) {
TEN = false;
digitalWrite(11, HIGH);
}
else if (VA10 < TH10) {
TEN = false;
digitalWrite(11, LOW);
}
if (VA11 > TH11 && !CV) {
count++;
ELE = true;
digitalWrite(12, LOW);
}
else if (VA11 > TH11 && CV) {
ELE = false;
digitalWrite(12, HIGH);
}
else if (VA11 < TH11) {
ELE = false;
digitalWrite(12, LOW);
}
if (VA12 > TH12 && !CV) {
count++;
TWE = true;
digitalWrite(13, LOW);
}
else if (VA12 > TH12 && CV) {
TWE = false;
digitalWrite(13, HIGH);
}
else if (VA12 < TH12) {
TWE = false;
digitalWrite(13, LOW);
}
if (VA13 > TH13 && !CV) {
count++;
THT = true;
digitalWrite(14, LOW);
}
else if (VA13 > TH13 && CV) {
THT = false;
digitalWrite(14, HIGH);
}
else if (VA13 < TH13) {
THT = false;
digitalWrite(14, LOW);
}
if (VA14 > TH14 && !CV) {
count++;
FOT = true;
digitalWrite(15, LOW);
}
else if (VA14 > TH14 && CV) {
FOT = false;
digitalWrite(15, HIGH);
}
else if (VA14 < TH14) {
FOT = false;
digitalWrite(15, LOW);
}
if (VA15 > TH15 && !CV) {
count++;
FIT = true;
digitalWrite(16, LOW);
}
else if (VA15 > TH15 && CV) {
FIT = false;
digitalWrite(16, HIGH);
}
else if (VA15 < TH15) {
FIT = false;
digitalWrite(16, LOW);
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
VOL0 = 50/count+constrain(map(VA0, TH0, TH0+5000, 0, 65), 0, 65);
Insta.play(true);
Insta.setVolume(VOL0);
// Serial.print("Tone0 active at vol:");
// Serial.println(VOL0);
// Serial.println(VA0);
}
if (!ZER) {
Insta.pause (true);
}
if (ONE) {
VOL1 = 50/count+constrain(map(VA1, TH1, TH1+5000, 0, 65), 0, 65);
Instb.play(true);
Instb.setVolume(VOL1);
// Serial.print("Tone1 active at vol:");
// Serial.println(VOL1);
// Serial.println(VA1);
}
if (!ONE) {
Instb.pause (true);
}
if (TWO) {
VOL2 = 50/count+constrain(map(VA2, TH2, TH2+5000, 0, 65), 0, 65);
Instc.play(true);
Instc.setVolume(VOL2);
// Serial.print("Tone2 active at vol:");
// Serial.println(VOL2);
// Serial.println(VA2);
}
if (!TWO) {
Instc.pause (true);
}
if (THR) {
VOL3 = 50/count+constrain(map(VA3, TH3, TH3+5000, 0, 65), 0, 65);
Instd.play(true);
Instd.setVolume(VOL3);
// Serial.print("Tone3 active at vol:");
// Serial.println(VOL3);
// Serial.println(VA3);
}
if (!THR) {
Instd.pause (true);
}
if (FOU) {
VOL4 = 50/count+constrain(map(VA4, TH4, TH4+5000, 0, 65), 0, 65);
Inste.play(true);
Inste.setVolume(VOL4);
// Serial.print("Tone4 active at vol:");
// Serial.println(VOL4);
// Serial.println(VA4);
}
if (!FOU) {
Inste.pause (true);
}
if (FIV) {
VOL5 = 50/count+constrain(map(VA5, TH5, TH5+5000, 0, 65), 0, 65);
Instf.play(true);
Instf.setVolume(VOL5);
// Serial.print("Tone5 active at vol:");
// Serial.println(VOL5);
// Serial.println(VA5);
}
if (!FIV) {
Instf.pause (true);
}
if (SIX) {
VOL6 = 50/count+constrain(map(VA6, TH6, TH6+5000, 0, 65), 0, 65);
Instg.play(true);
Instg.setVolume(VOL6);
// Serial.print("Tone6 active at vol:");
// Serial.println(VOL6);
// Serial.println(VA6);
}
if (!SIX) {
Instg.pause (true);
}
if (SEV) {
VOL7 = 50/count+constrain(map(VA7, TH7, TH7+5000, 0, 65), 0, 65);
Insth.play(true);
Insth.setVolume(VOL7);
// Serial.print("Tone7 active at vol:");
// Serial.println(VOL7);
// Serial.println(VA7);
}
if (!SEV) {
Insth.pause (true);
}
if (EIG) {
VOL8 = 50/count+constrain(map(VA8, TH8, TH8+5000, 0, 65), 0, 65);
Insti.play(true);
Insti.setVolume(VOL8);
// Serial.print("Tone8 active at vol:");
// Serial.println(VOL8);
// Serial.println(VA8);
}
if (!EIG) {
Insti.pause (true);
}
if (NIN) {
VOL9 = 50/count+constrain(map(VA9, TH9, TH9+5000, 0, 65), 0, 65);
Instj.play(true);
Instj.setVolume(VOL9);
// Serial.print("Tone9 active at vol:");
// Serial.println(VOL9);
// Serial.println(VA9);
}
if (!NIN) {
Instk.pause (true);
}
if (TEN) {
VOL10 = 50/count+constrain(map(VA10, TH10, TH10+5000, 0, 65), 0, 65);
Instk.play(true);
Instk.setVolume(VOL10);
// Serial.print("Tone10 active at vol:");
// Serial.println(VOL10);
// Serial.println(VA10);
}
if (!TEN) {
Instk.pause (true);
}
if (ELE) {
VOL11 = 50/count+constrain(map(VA11, TH11, TH11+5000, 0, 65), 0, 65);
Instl.play(true);
Instl.setVolume(VOL11);
// Serial.print("Tone11 active at vol:");
// Serial.println(VOL11);
// Serial.println(VA11);
}
if (!ELE) {
Instl.pause (true);
}
if (TWE) {
VOL12 = 50/count+constrain(map(VA12, TH12, TH12+5000, 0, 65), 0, 65);
Instm.play(true);
Instm.setVolume(VOL12);
// Serial.print("Tone12 active at vol:");
// Serial.println(VOL12);
// Serial.println(VA12);
}
if (!TWE) {
Instm.pause (true);
}
if (THT) {
VOL13 = 50/count+constrain(map(VA13, TH13, TH13+5000, 0, 65), 0, 65);
Instn.play(true);
Instn.setVolume(VOL13);
// Serial.print("Tone13 active at vol:");
// Serial.println(VOL13);
// Serial.println(VA13);
}
if (!THT) {
Instn.pause (true);
}
if (FOT) {
VOL14 = 50/count+constrain(map(VA14, TH14, TH14+5000, 0, 65), 0, 65);
Insto.play(true);
Insto.setVolume(VOL14);
// Serial.print("Tone14 active at vol:");
// Serial.println(VOL14);
// Serial.println(VA14);
}
if (!FOT) {
Insto.pause (true);
}
if (FIT) {
VOL15 = 50/count+constrain(map(VA15, TH15, TH15+5000, 0, 65), 0, 65);
Instp.play(true);
Instp.setVolume(VOL15);
// Serial.print("Tone15 active at vol:");
// Serial.println(VOL15);
// Serial.println(VA15);
}
if (!FIT) {
Instp.pause (true);
}
if (digitalRead(17) == HIGH) {
calib();
}
}

@ -0,0 +1,776 @@
#include <MusicWithoutDelay.h>
#include <synth.h>
#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
const char note0[] PROGMEM = ":d=128,b=300:c-1+"; //plays c4
const char note1[] PROGMEM = ":d=128,b=300:d-1+"; //plays d4
const char note2[] PROGMEM = ":d=128,b=300:e-1+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=300:g-1+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=300:a-1+"; //plays a4
const char note5[] PROGMEM = ":d=128,b=300:c+"; //plays c5
const char note6[] PROGMEM = ":d=128,b=300:d+"; //plays d5
const char note7[] PROGMEM = ":d=128,b=300:e+"; //plays e5
const char note8[] PROGMEM = ":d=128,b=300:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=300:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=300:c+1+"; //plays c6
const char note11[] PROGMEM = ":d=128,b=300:d+1+"; //plays d6
const char note12[] PROGMEM = ":d=128,b=300:e+1+"; //plays e6
const char note13[] PROGMEM = ":d=128,b=300:g+1+"; //plays g6
const char note14[] PROGMEM = ":d=128,b=300:a+1+"; //plays a6
const char note15[] PROGMEM = ":d=128,b=300:c+2+"; //plays c7
//instruments
MusicWithoutDelay Insta(note0);
MusicWithoutDelay Instb(note1);
MusicWithoutDelay Instc(note2);
MusicWithoutDelay Instd(note3);
MusicWithoutDelay Inste(note4);
MusicWithoutDelay Instf(note5);
MusicWithoutDelay Instg(note6);
MusicWithoutDelay Insth(note7);
MusicWithoutDelay Insti(note8);
MusicWithoutDelay Instj(note9);
MusicWithoutDelay Instk(note10);
MusicWithoutDelay Instl(note11);
MusicWithoutDelay Instm(note12);
MusicWithoutDelay Instn(note13);
MusicWithoutDelay Insto(note14);
MusicWithoutDelay Instp(note15);
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9, VA10, VA11, VA12, VA13, VA14, VA15;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12, TH13, TH14, TH15;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9, VOL10, VOL11, VOL12, VOL13, VOL14, VOL15;
bool CV;
bool ZER;
bool ONE;
bool TWO;
bool THR;
bool FOU;
bool FIV;
bool SIX;
bool SEV;
bool EIG;
bool NIN;
bool TEN;
bool ELE;
bool TWE;
bool THT;
bool FOT;
bool FIT;
void setup() {
Serial.begin(115200);
//set the gain for multiplexed INs
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
Serial.println("Ini MPX ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("MPX Ini");
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (adsa.readADC_SingleEnded(0) + 800);
TH1 = (adsa.readADC_SingleEnded(1) + 800);
TH2 = (adsa.readADC_SingleEnded(2) + 800);
TH3 = (adsa.readADC_SingleEnded(3) + 800);
TH4 = (adsb.readADC_SingleEnded(0) + 800);
TH5 = (adsb.readADC_SingleEnded(1) + 800);
TH6 = (adsb.readADC_SingleEnded(2) + 800);
TH7 = (adsb.readADC_SingleEnded(3) + 800);
TH8 = (adsc.readADC_SingleEnded(0) + 800);
TH9 = (adsc.readADC_SingleEnded(1) + 800);
TH10 = (adsc.readADC_SingleEnded(2) + 800);
TH11 = (adsc.readADC_SingleEnded(3) + 800);
TH12 = (adsd.readADC_SingleEnded(0) + 800);
TH13 = (adsd.readADC_SingleEnded(1) + 800);
TH14 = (adsd.readADC_SingleEnded(2) + 800);
TH15 = (adsd.readADC_SingleEnded(3) + 800);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.print ("TH10=");
Serial.println (TH10);
Serial.print ("TH11=");
Serial.println (TH11);
Serial.print ("TH12=");
Serial.println (TH12);
Serial.print ("TH13=");
Serial.println (TH13);
Serial.print ("TH14=");
Serial.println (TH14);
Serial.print ("TH15=");
Serial.println (TH15);
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
Insta.begin(CHA, TRIANGLE, ENVELOPE2, 0);
Instb.begin(TRIANGLE, ENVELOPE2, 0);
Instc.begin(TRIANGLE, ENVELOPE2, 0);
Instd.begin(TRIANGLE, ENVELOPE2, 0);
Inste.begin(TRIANGLE, ENVELOPE2, 0);
Instf.begin(TRIANGLE, ENVELOPE2, 0);
Instg.begin(TRIANGLE, ENVELOPE2, 0);
Insth.begin(TRIANGLE, ENVELOPE2, 0);
Insti.begin(TRIANGLE, ENVELOPE2, 0);
Instj.begin(TRIANGLE, ENVELOPE2, 0);
Instk.begin(TRIANGLE, ENVELOPE2, 0);
Instl.begin(TRIANGLE, ENVELOPE2, 0);
Instm.begin(TRIANGLE, ENVELOPE2, 0);
Instn.begin(TRIANGLE, ENVELOPE2, 0);
Insto.begin(TRIANGLE, ENVELOPE2, 0);
Instp.begin(TRIANGLE, ENVELOPE2, 0);
Insta.pause(true);
Instb.pause(true);
Instc.pause(true);
Instd.pause(true);
Inste.pause(true);
Instf.pause(true);
Instg.pause(true);
Insth.pause(true);
Insti.pause(true);
Instj.pause(true);
Instk.pause(true);
Instl.pause(true);
Instm.pause(true);
Instn.pause(true);
Insto.pause(true);
Instp.pause(true);
Serial.println("go!");
}
void loop() {
CV = digitalRead(22);
count = 0;
Insta.update();
Instb.update();
Instc.update();
Instd.update();
Inste.update();
Instf.update();
Instg.update();
Insth.update();
Insti.update();
Instj.update();
Instk.update();
Instl.update();
Instm.update();
Instn.update();
Insto.update();
Instp.update();
//Messure LDR inputs
VA0 = adsa.readADC_SingleEnded(0);
VA1 = adsa.readADC_SingleEnded(1);
VA2 = adsa.readADC_SingleEnded(2);
VA3 = adsa.readADC_SingleEnded(3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = adsb.readADC_SingleEnded(0);
VA5 = adsb.readADC_SingleEnded(1);
VA6 = adsb.readADC_SingleEnded(2);
VA7 = adsb.readADC_SingleEnded(3);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = adsc.readADC_SingleEnded(0);
VA9 = adsc.readADC_SingleEnded(1);
VA10 = adsc.readADC_SingleEnded(2);
VA11 = adsc.readADC_SingleEnded(3);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.print("VA10: "); Serial.println(VA10);
// Serial.print("VA11: "); Serial.println(VA11);
// Serial.println(" ");
VA12 = adsd.readADC_SingleEnded(0);
VA13 = adsd.readADC_SingleEnded(1);
VA14 = adsd.readADC_SingleEnded(2);
VA15 = adsd.readADC_SingleEnded(3);
// Serial.print("VA12: "); Serial.println(VA12);
// Serial.print("VA13: "); Serial.println(VA13);
// Serial.print("VA14: "); Serial.println(VA14);
// Serial.print("VA15: "); Serial.println(VA15);
// Serial.println(" ");
if (VA0 > TH0) {
count++;
ZER = true;
}
else if (VA0 < TH0) {
ZER = false;
}
if (VA1 > TH1) {
count++;
ONE = true;
}
else if (VA1 < TH1) {
ONE = false;
}
if (VA2 > TH2) {
count++;
TWO = true;
}
else if (VA2 < TH2) {
TWO = false;
}
if (VA3 > TH3) {
count++;
THR = true;
}
else if (VA3 < TH3) {
THR = false;
}
if (VA4 > TH4) {
count++;
FOU = true;
}
else if (VA4 < TH4) {
FOU = false;
}
if (VA5 > TH5) {
count++;
FIV = true;
}
else if (VA5 < TH5) {
FIV = false;
}
if (VA6 > TH6) {
count++;
SIX = true;
}
else if (VA6 < TH6) {
SIX = false;
}
if (VA7 > TH7) {
count++;
SEV = true;
}
else if (VA7 < TH7) {
SEV = false;
}
if (VA8 > TH8) {
count++;
EIG = true;
}
else if (VA8 < TH8) {
EIG = false;
}
if (VA9 > TH9) {
count++;
NIN = true;
}
else if (VA9 < TH9) {
NIN = false;
}
if (VA10 > TH10) {
count++;
TEN = true;
}
else if (VA10 < TH10) {
TEN = false;
}
if (VA11 > TH11) {
count++;
ELE = true;
}
else if (VA11 < TH11) {
ELE = false;
}
if (VA12 > TH12) {
count++;
TWE = true;
}
else if (VA12 < TH12) {
TWE = false;
}
if (VA13 > TH13) {
count++;
THT = true;
}
else if (VA13 < TH13) {
THT = false;
}
if (VA14 > TH14) {
count++;
FOT = true;
}
else if (VA14 < TH14) {
FOT = false;
}
if (VA15 > TH15) {
count++;
FIT = true;
}
else if (VA15 < TH15) {
FIT = false;
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
if (ZER) {
VOL0 = 50/count+constrain(map(VA0, TH0, TH0+5000, 0, 65), 0, 65);
Insta.play(true);
Insta.setVolume(VOL0);
// Serial.print("Tone0 active at vol:");
// Serial.println(VOL0);
// Serial.println(VA0);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(0, HIGH);
}
else if (!CV) {
digitalWrite(0, LOW);
}
}
if (!ZER) {
Insta.pause (true);
//Kill ControlVoltage
digitalWrite(0, LOW);
}
if (ONE) {
VOL1 = 50/count+constrain(map(VA1, TH1, TH1+5000, 0, 65), 0, 65);
Instb.play(true);
Instb.setVolume(VOL1);
// Serial.print("Tone1 active at vol:");
// Serial.println(VOL1);
// Serial.println(VA1);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(1, HIGH);
}
else if (!CV) {
digitalWrite(1, LOW);
}
}
if (!ONE) {
Instb.pause (true);
//Kill ControlVoltage
digitalWrite(1, LOW);
}
if (TWO) {
VOL2 = 50/count+constrain(map(VA2, TH2, TH2+5000, 0, 65), 0, 65);
Instc.play(true);
Instc.setVolume(VOL2);
// Serial.print("Tone2 active at vol:");
// Serial.println(VOL2);
// Serial.println(VA2);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(2, HIGH);
}
else if (!CV) {
digitalWrite(2, LOW);
}
}
if (!TWO) {
Instc.pause (true);
//Kill ControlVoltage
digitalWrite(2, LOW);
}
if (THR) {
VOL3 = 50/count+constrain(map(VA3, TH3, TH3+5000, 0, 65), 0, 65);
Instd.play(true);
Instd.setVolume(VOL3);
// Serial.print("Tone3 active at vol:");
// Serial.println(VOL3);
// Serial.println(VA3);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(3, HIGH);
}
else if (!CV) {
digitalWrite(3, LOW);
}
}
if (!THR) {
Instd.pause (true);
//Kill ControlVoltage
digitalWrite(3, LOW);
}
if (FOU) {
VOL4 = 50/count+constrain(map(VA4, TH4, TH4+5000, 0, 65), 0, 65);
Inste.play(true);
Inste.setVolume(VOL4);
// Serial.print("Tone4 active at vol:");
// Serial.println(VOL4);
// Serial.println(VA4);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(4, HIGH);
}
else if (!CV) {
digitalWrite(4, LOW);
}
}
if (!FOU) {
Inste.pause (true);
//Kill ControlVoltage
digitalWrite(4, LOW);
}
if (FIV) {
VOL5 = 50/count+constrain(map(VA5, TH5, TH5+5000, 0, 65), 0, 65);
Instf.play(true);
Instf.setVolume(VOL5);
// Serial.print("Tone5 active at vol:");
// Serial.println(VOL5);
// Serial.println(VA5);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(5, HIGH);
}
else if (!CV) {
digitalWrite(5, LOW);
}
}
if (!FIV) {
Instf.pause (true);
//Kill ControlVoltage
digitalWrite(5, LOW);
}
if (SIX) {
VOL6 = 50/count+constrain(map(VA6, TH6, TH6+5000, 0, 65), 0, 65);
Instg.play(true);
Instg.setVolume(VOL6);
// Serial.print("Tone6 active at vol:");
// Serial.println(VOL6);
// Serial.println(VA6);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(6, HIGH);
}
else if (!CV) {
digitalWrite(6, LOW);
}
}
if (!SIX) {
Instg.pause (true);
//Kill ControlVoltage
digitalWrite(6, LOW);
}
if (SEV) {
VOL7 = 50/count+constrain(map(VA7, TH7, TH7+5000, 0, 65), 0, 65);
Insth.play(true);
Insth.setVolume(VOL7);
// Serial.print("Tone7 active at vol:");
// Serial.println(VOL7);
// Serial.println(VA7);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(7, HIGH);
}
else if (!CV) {
digitalWrite(7, LOW);
}
}
if (!SEV) {
Insth.pause (true);
//Kill ControlVoltage
digitalWrite(7, LOW);
}
if (EIG) {
VOL8 = 50/count+constrain(map(VA8, TH8, TH8+5000, 0, 65), 0, 65);
Insti.play(true);
Insti.setVolume(VOL8);
// Serial.print("Tone8 active at vol:");
// Serial.println(VOL8);
// Serial.println(VA8);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(8, HIGH);
}
else if (!CV) {
digitalWrite(8, LOW);
}
}
if (!EIG) {
Insti.pause (true);
//Kill ControlVoltage
digitalWrite(8, LOW);
}
if (NIN) {
VOL9 = 50/count+constrain(map(VA9, TH9, TH9+5000, 0, 65), 0, 65);
Instj.play(true);
Instj.setVolume(VOL9);
// Serial.print("Tone9 active at vol:");
// Serial.println(VOL9);
// Serial.println(VA9);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(9, HIGH);
}
else if (!CV) {
digitalWrite(9, LOW);
}
}
if (!NIN) {
Instk.pause (true);
//Kill ControlVoltage
digitalWrite(9, LOW);
}
if (TEN) {
VOL10 = 50/count+constrain(map(VA10, TH10, TH10+5000, 0, 65), 0, 65);
Instk.play(true);
Instk.setVolume(VOL10);
// Serial.print("Tone10 active at vol:");
// Serial.println(VOL10);
// Serial.println(VA10);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(10, HIGH);
}
else if (!CV) {
digitalWrite(10, LOW);
}
}
if (!TEN) {
Instk.pause (true);
//Kill ControlVoltage
digitalWrite(10, LOW);
}
if (ELE) {
VOL11 = 50/count+constrain(map(VA11, TH11, TH11+5000, 0, 65), 0, 65);
Instl.play(true);
Instl.setVolume(VOL11);
// Serial.print("Tone11 active at vol:");
// Serial.println(VOL11);
// Serial.println(VA11);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(11, HIGH);
}
else if (!CV) {
digitalWrite(11, LOW);
}
}
if (!ELE) {
Instl.pause (true);
//Kill ControlVoltage
digitalWrite(11, LOW);
}
if (TWE) {
VOL12 = 50/count+constrain(map(VA12, TH12, TH12+5000, 0, 65), 0, 65);
Instm.play(true);
Instm.setVolume(VOL12);
// Serial.print("Tone12 active at vol:");
// Serial.println(VOL12);
// Serial.println(VA12);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(12, HIGH);
}
else if (!CV) {
digitalWrite(12, LOW);
}
}
if (!TWE) {
Instm.pause (true);
//Kill ControlVoltage
digitalWrite(12, LOW);
}
if (THT) {
VOL13 = 50/count+constrain(map(VA13, TH13, TH13+5000, 0, 65), 0, 65);
Instn.play(true);
Instn.setVolume(VOL13);
// Serial.print("Tone13 active at vol:");
// Serial.println(VOL13);
// Serial.println(VA13);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(13, HIGH);
}
else if (!CV) {
digitalWrite(13, LOW);
}
}
if (!THT) {
Instn.pause (true);
//Kill ControlVoltage
digitalWrite(13, LOW);
}
if (FOT) {
VOL14 = 50/count+constrain(map(VA14, TH14, TH14+5000, 0, 65), 0, 65);
Insto.play(true);
Insto.setVolume(VOL14);
// Serial.print("Tone14 active at vol:");
// Serial.println(VOL14);
// Serial.println(VA14);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(14, HIGH);
}
else if (!CV) {
digitalWrite(14, LOW);
}
}
if (!FOT) {
Insto.pause (true);
//Kill ControlVoltage
digitalWrite(14, LOW);
}
if (FIT) {
VOL15 = 50/count+constrain(map(VA15, TH15, TH15+5000, 0, 65), 0, 65);
Instp.play(true);
Instp.setVolume(VOL15);
// Serial.print("Tone15 active at vol:");
// Serial.println(VOL15);
// Serial.println(VA15);
//Output ControlVoltage if switch is activated
if (CV) {
digitalWrite(15, HIGH);
}
else if (!CV) {
digitalWrite(15, LOW);
}
}
if (!FIT) {
Instp.pause (true);
//Kill ControlVoltage
digitalWrite(15, LOW);
}
}

@ -0,0 +1,680 @@
#include <MusicWithoutDelay.h>
//#include <synth.h>
//#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
const char note0[] PROGMEM = ":d=128,b=600,o=3:c+"; //plays c4
const char note1[] PROGMEM = ":d=128,b=600,o=3:d+"; //plays d4
const char note2[] PROGMEM = ":d=128,b=600,o=3:e+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=600,o=3:g+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=600,o=3:a+"; //plays a4
const char note5[] PROGMEM = ":d=128,b=600,o=4:c+"; //plays c5
const char note6[] PROGMEM = ":d=128,b=600,o=4:d+"; //plays d5
const char note7[] PROGMEM = ":d=128,b=600,o=4:e+"; //plays e5
const char note8[] PROGMEM = ":d=128,b=600,o=4:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=600,o=4:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=600,o=5:c+"; //plays c6
const char note11[] PROGMEM = ":d=128,b=600,o=5:d+"; //plays d6
const char note12[] PROGMEM = ":d=128,b=600,o=5:e+"; //plays e6
const char note13[] PROGMEM = ":d=128,b=600,o=5:g+"; //plays g6
const char note14[] PROGMEM = ":d=128,b=600,o=5:a+"; //plays a6
const char note15[] PROGMEM = ":d=128,b=600,o=6:c+"; //plays c7
MusicWithoutDelay Insta(note0);
MusicWithoutDelay Instb(note1);
MusicWithoutDelay Instc(note2);
MusicWithoutDelay Instd(note3);
MusicWithoutDelay Inste(note4);
MusicWithoutDelay Instf(note5);
MusicWithoutDelay Instg(note6);
MusicWithoutDelay Insth(note7);
MusicWithoutDelay Insti(note8);
MusicWithoutDelay Instj(note9);
MusicWithoutDelay Instk(note10);
MusicWithoutDelay Instl(note11);
MusicWithoutDelay Instm(note12);
MusicWithoutDelay Instn(note13);
MusicWithoutDelay Insto(note14);
MusicWithoutDelay Instp(note15);
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9, VA10, VA11, VA12, VA13, VA14, VA15;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12, TH13, TH14, TH15;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9, VOL10, VOL11, VOL12, VOL13, VOL14, VOL15;
bool CV;
int ZER;
int ONE;
int TWO;
int THR;
int FOU;
int FIV;
int SIX;
int SEV;
int EIG;
int NIN;
int TEN;
int ELE;
int TWE;
int THT;
int FOT;
int FIT;
void setup() {
Serial.begin(115200);
pinMode(20, INPUT);
//set the gain for multiplexed INs
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
Serial.println("Ini MPX ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("MPX Ini");
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
calib();
Insta.begin(CHA, TRIANGLE, ENVELOPE0, 0);
Instb.begin(TRIANGLE, ENVELOPE0, 0);
Instc.begin(TRIANGLE, ENVELOPE0, 0);
Instd.begin(TRIANGLE, ENVELOPE0, 0);
Inste.begin(TRIANGLE, ENVELOPE0, 0);
Instf.begin(TRIANGLE, ENVELOPE0, 0);
Instg.begin(TRIANGLE, ENVELOPE0, 0);
Insth.begin(TRIANGLE, ENVELOPE0, 0);
Insti.begin(TRIANGLE, ENVELOPE0, 0);
Instj.begin(TRIANGLE, ENVELOPE0, 0);
Instk.begin(TRIANGLE, ENVELOPE0, 0);
Instl.begin(TRIANGLE, ENVELOPE0, 0);
Instm.begin(TRIANGLE, ENVELOPE0, 0);
Instn.begin(TRIANGLE, ENVELOPE0, 0);
Insto.begin(TRIANGLE, ENVELOPE0, 0);
Instp.begin(TRIANGLE, ENVELOPE0, 0);
Insta.pause(true);
Instb.pause(true);
Instc.pause(true);
Instd.pause(true);
Inste.pause(true);
Instf.pause(true);
Instg.pause(true);
Insth.pause(true);
Insti.pause(true);
Instj.pause(true);
Instk.pause(true);
Instl.pause(true);
Instm.pause(true);
Instn.pause(true);
Insto.pause(true);
Instp.pause(true);
Serial.println("go!");
}
void calib() {
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (adsa.readADC_SingleEnded(0) + 800);
TH1 = (adsa.readADC_SingleEnded(1) + 800);
TH2 = (adsa.readADC_SingleEnded(2) + 800);
TH3 = (adsa.readADC_SingleEnded(3) + 800);
TH4 = (adsb.readADC_SingleEnded(0) + 800);
TH5 = (adsb.readADC_SingleEnded(1) + 800);
TH6 = (adsb.readADC_SingleEnded(2) + 800);
TH7 = (adsb.readADC_SingleEnded(3) + 800);
TH8 = (adsc.readADC_SingleEnded(0) + 800);
TH9 = (adsc.readADC_SingleEnded(1) + 800);
TH10 = (adsc.readADC_SingleEnded(2) + 800);
TH11 = (adsc.readADC_SingleEnded(3) + 800);
TH12 = (adsd.readADC_SingleEnded(0) + 800);
TH13 = (adsd.readADC_SingleEnded(1) + 800);
TH14 = (adsd.readADC_SingleEnded(2) + 800);
TH15 = (adsd.readADC_SingleEnded(3) + 800);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.print ("TH10=");
Serial.println (TH10);
Serial.print ("TH11=");
Serial.println (TH11);
Serial.print ("TH12=");
Serial.println (TH12);
Serial.print ("TH13=");
Serial.println (TH13);
Serial.print ("TH14=");
Serial.println (TH14);
Serial.print ("TH15=");
Serial.println (TH15);
}
void loop() {
bool curcv = digitalRead(20);
// Serial.println (curcv);
count = 0;
Insta.update();
Instb.update();
Instc.update();
Instd.update();
Inste.update();
Instf.update();
Instg.update();
Insth.update();
Insti.update();
Instj.update();
Instk.update();
Instl.update();
Instm.update();
Instn.update();
Insto.update();
Instp.update();
//Messure LDR inputs
VA0 = adsa.readADC_SingleEnded(0);
VA1 = adsa.readADC_SingleEnded(1);
VA2 = adsa.readADC_SingleEnded(2);
VA3 = adsa.readADC_SingleEnded(3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = adsb.readADC_SingleEnded(0);
VA5 = adsb.readADC_SingleEnded(1);
VA6 = adsb.readADC_SingleEnded(2);
VA7 = adsb.readADC_SingleEnded(3);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = adsc.readADC_SingleEnded(0);
VA9 = adsc.readADC_SingleEnded(1);
VA10 = adsc.readADC_SingleEnded(2);
VA11 = adsc.readADC_SingleEnded(3);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.print("VA10: "); Serial.println(VA10);
// Serial.print("VA11: "); Serial.println(VA11);
// Serial.println(" ");
VA12 = adsd.readADC_SingleEnded(0);
VA13 = adsd.readADC_SingleEnded(1);
VA14 = adsd.readADC_SingleEnded(2);
VA15 = adsd.readADC_SingleEnded(3);
// Serial.print("VA12: "); Serial.println(VA12);
// Serial.print("VA13: "); Serial.println(VA13);
// Serial.print("VA14: "); Serial.println(VA14);
// Serial.print("VA15: "); Serial.println(VA15);
// Serial.println(" ");
if (CV != curcv) {
CV = curcv;
// CV changes
// Serial.print("cv");
// Serial.println(CV);
if (CV) {
// entering Audio
Serial.println("entering Audio");
digitalWrite(0, LOW);
digitalWrite(1, LOW);
digitalWrite(2, LOW);
digitalWrite(4, LOW);
digitalWrite(5, LOW);
digitalWrite(6, LOW);
digitalWrite(7, LOW);
digitalWrite(8, LOW);
digitalWrite(9, LOW);
digitalWrite(10, LOW);
digitalWrite(11, LOW);
digitalWrite(12, LOW);
digitalWrite(13, LOW);
digitalWrite(14, LOW);
digitalWrite(15, LOW);
digitalWrite(16, LOW);
} else {
//entering CV
Serial.println("entering CV");
ZER = false;
ONE = false;
TWO = false;
THR = false;
FOU = false;
FIV = false;
SIX = false;
SEV = false;
EIG = false;
NIN = false;
TEN = false;
ELE = false;
TWE = false;
THT = false;
FOT = false;
FIT = false;
}
}
if (!CV) {
control();
} else {
audio();
}
//if (digitalRead(17) == LOW) {
//calib();
//}
}
void control() {
if (VA0 > TH0) {
digitalWrite(0, HIGH);
}
else if (VA0 < TH0) {
digitalWrite(0, LOW);
}
if (VA1 > TH1) {
digitalWrite(1, HIGH);
}
else if (VA1 < TH1) {
digitalWrite(1, LOW);
}
if (VA2 > TH2) {
digitalWrite(2, HIGH);
}
else if (VA2 < TH2) {
digitalWrite(2, LOW);
}
if (VA3 > TH3) {
digitalWrite(4, HIGH);
}
else if (VA3 < TH3) {
digitalWrite(4, LOW);
}
if (VA4 > TH4) {
digitalWrite(5, HIGH);
}
else if (VA4 < TH4) {
digitalWrite(5, LOW);
}
if (VA5 > TH5) {
digitalWrite(7, HIGH);
}
else if (VA5 < TH5) {
digitalWrite(7, LOW);
}
if (VA6 > TH6) {
digitalWrite(6, HIGH);
}
else if (VA6 < TH6) {
digitalWrite(6, LOW);
}
if (VA7 > TH7) {
digitalWrite(8, HIGH);
}
else if (VA7 < TH7) {
digitalWrite(8, LOW);
}
if (VA8 > TH8) {
digitalWrite(9, HIGH);
}
else if (VA8 < TH8) {
digitalWrite(9, LOW);
}
if (VA9 > TH9) {
digitalWrite(10, HIGH);
}
else if (VA9 < TH9) {
digitalWrite(10, LOW);
}
if (VA10 > TH10) {
digitalWrite(12, HIGH);
}
else if (VA10 < TH10) {
digitalWrite(12, LOW);
}
if (VA11 > TH11) {
digitalWrite(11, HIGH);
}
else if (VA11 < TH11) {
digitalWrite(11, LOW);
}
if (VA12 > TH12) {
digitalWrite(13, HIGH);
}
else if (VA12 < TH12) {
digitalWrite(13, LOW);
}
if (VA13 > TH13) {
digitalWrite(14, HIGH);
}
else if (VA13 < TH13) {
digitalWrite(14, LOW);
}
if (VA14 > TH14) {
digitalWrite(15, HIGH);
}
else if (VA14 < TH14) {
digitalWrite(15, LOW);
}
if (VA15 > TH15) {
digitalWrite(16, HIGH);
}
else if (VA15 < TH15) {
digitalWrite(16, LOW);
}
}
void audio () {
if (ZER = (VA0 > TH0)) count++;
if (ONE = (VA1 > TH1)) count++;
if (TWO = (VA2 > TH2)) count++;
if (THR = (VA3 > TH3)) count++;
if (FOU = (VA4 > TH4)) count++;
if (FIV = (VA5 > TH5)) count++;
if (SIX = (VA6 > TH6)) count++;
if (SEV = (VA7 > TH7)) count++;
if (EIG = (VA8 > TH8)) count++;
if (NIN = (VA9 > TH9)) count++;
if (TEN = (VA10 > TH10)) count++;
if (ELE = (VA11 > TH11)) count++;
if (TWE = (VA12 > TH12)) count++;
if (THT = (VA13 > TH13)) count++;
if (FOT = (VA14 > TH14)) count++;
if (FIV = (VA15 > TH15)) count++;
if (ZER) {
VOL0 = 50/count+constrain(map(VA0, TH0, TH0+5000, 0, 65), 0, 65);
Insta.play(true);
Insta.setVolume(VOL0);
// Serial.print("Tone0 active at vol:");
// Serial.println(VOL0);
// Serial.println(VA0);
}
if (!ZER) {
Insta.pause (true);
}
if (ONE) {
VOL1 = 50/count+constrain(map(VA1, TH1, TH1+5000, 0, 65), 0, 65);
Instb.play(true);
Instb.setVolume(VOL1);
// Serial.print("Tone1 active at vol:");
// Serial.println(VOL1);
// Serial.println(VA1);
}
if (!ONE) {
Instb.pause (true);
}
if (TWO) {
VOL2 = 50/count+constrain(map(VA2, TH2, TH2+5000, 0, 65), 0, 65);
Instc.play(true);
Instc.setVolume(VOL2);
// Serial.print("Tone2 active at vol:");
// Serial.println(VOL2);
// Serial.println(VA2);
}
if (!TWO) {
Instc.pause (true);
}
if (THR) {
VOL3 = 50/count+constrain(map(VA3, TH3, TH3+5000, 0, 65), 0, 65);
Instd.play(true);
Instd.setVolume(VOL3);
// Serial.print("Tone3 active at vol:");
// Serial.println(VOL3);
// Serial.println(VA3);
}
if (!THR) {
Instd.pause (true);
}
if (FOU) {
VOL4 = 50/count+constrain(map(VA4, TH4, TH4+5000, 0, 65), 0, 65);
Inste.play(true);
Inste.setVolume(VOL4);
// Serial.print("Tone4 active at vol:");
// Serial.println(VOL4);
// Serial.println(VA4);
}
if (!FOU) {
Inste.pause (true);
}
if (FIV) {
VOL5 = 50/count+constrain(map(VA5, TH5, TH5+5000, 0, 65), 0, 65);
Instf.play(true);
Instf.setVolume(VOL5);
// Serial.print("Tone5 active at vol:");
// Serial.println(VOL5);
// Serial.println(VA5);
}
if (!FIV) {
Instf.pause (true);
}
if (SIX) {
VOL6 = 50/count+constrain(map(VA6, TH6, TH6+5000, 0, 65), 0, 65);
Instg.play(true);
Instg.setVolume(VOL6);
// Serial.print("Tone6 active at vol:");
// Serial.println(VOL6);
// Serial.println(VA6);
}
if (!SIX) {
Instg.pause (true);
}
if (SEV) {
VOL7 = 50/count+constrain(map(VA7, TH7, TH7+5000, 0, 65), 0, 65);
Insth.play(true);
Insth.setVolume(VOL7);
// Serial.print("Tone7 active at vol:");
// Serial.println(VOL7);
// Serial.println(VA7);
}
if (!SEV) {
Insth.pause (true);
}
if (EIG) {
VOL8 = 50/count+constrain(map(VA8, TH8, TH8+5000, 0, 65), 0, 65);
Insti.play(true);
Insti.setVolume(VOL8);
// Serial.print("Tone8 active at vol:");
// Serial.println(VOL8);
// Serial.println(VA8);
}
if (!EIG) {
Insti.pause (true);
}
if (NIN) {
VOL9 = 50/count+constrain(map(VA9, TH9, TH9+5000, 0, 65), 0, 65);
Instj.play(true);
Instj.setVolume(VOL9);
// Serial.print("Tone9 active at vol:");
// Serial.println(VOL9);
// Serial.println(VA9);
}
if (!NIN) {
Instk.pause (true);
}
if (TEN) {
VOL10 = 50/count+constrain(map(VA10, TH10, TH10+5000, 0, 65), 0, 65);
Instk.play(true);
Instk.setVolume(VOL10);
// Serial.print("Tone10 active at vol:");
// Serial.println(VOL10);
// Serial.println(VA10);
}
if (!TEN) {
Instk.pause (true);
}
if (ELE) {
VOL11 = 50/count+constrain(map(VA11, TH11, TH11+5000, 0, 65), 0, 65);
Instl.play(true);
Instl.setVolume(VOL11);
// Serial.print("Tone11 active at vol:");
// Serial.println(VOL11);
// Serial.println(VA11);
}
if (!ELE) {
Instl.pause (true);
}
if (TWE) {
VOL12 = 50/count+constrain(map(VA12, TH12, TH12+5000, 0, 65), 0, 65);
Instm.play(true);
Instm.setVolume(VOL12);
// Serial.print("Tone12 active at vol:");
// Serial.println(VOL12);
// Serial.println(VA12);
}
if (!TWE) {
Instm.pause (true);
}
if (THT) {
VOL13 = 50/count+constrain(map(VA13, TH13, TH13+5000, 0, 65), 0, 65);
Instn.play(true);
Instn.setVolume(VOL13);
// Serial.print("Tone13 active at vol:");
// Serial.println(VOL13);
// Serial.println(VA13);
}
if (!THT) {
Instn.pause (true);
}
if (FOT) {
VOL14 = 50/count+constrain(map(VA14, TH14, TH14+5000, 0, 65), 0, 65);
Insto.play(true);
Insto.setVolume(VOL14);
// Serial.print("Tone14 active at vol:");
// Serial.println(VOL14);
// Serial.println(VA14);
}
if (!FOT) {
Insto.pause (true);
}
if (FIT) {
VOL15 = 50/count+constrain(map(VA15, TH15, TH15+5000, 0, 65), 0, 65);
Instp.play(true);
Instp.setVolume(VOL15);
// Serial.print("Tone15 active at vol:");
// Serial.println(VOL15);
// Serial.println(VA15);
}
if (!FIT) {
Instp.pause (true);
}
Serial.print("Intruments playing = ");
Serial.println(count);
}

@ -0,0 +1,767 @@
#include <MusicWithoutDelay.h>
//#include <synth.h>
//#include <tables.h>
#include <Wire.h>
#include <Adafruit_ADS1015.h>
//multiplexer adresses
Adafruit_ADS1115 adsa (0x48);
Adafruit_ADS1115 adsb (0x49);
Adafruit_ADS1115 adsc (0x4A);
Adafruit_ADS1115 adsd (0x4B);
//note values
const char note0[] PROGMEM = ":d=128,b=600,o=3:c+"; //plays c4
const char note1[] PROGMEM = ":d=128,b=600,o=3:d+"; //plays d4
const char note2[] PROGMEM = ":d=128,b=600,o=3:e+"; //plays e4
const char note3[] PROGMEM = ":d=128,b=600,o=3:g+"; //plays g4
const char note4[] PROGMEM = ":d=128,b=600,o=3:a+"; //plays a4
const char note5[] PROGMEM = ":d=128,b=600,o=4:c+"; //plays c5
const char note6[] PROGMEM = ":d=128,b=600,o=4:d+"; //plays d5
const char note7[] PROGMEM = ":d=128,b=600,o=4:e+"; //plays e5
const char note8[] PROGMEM = ":d=128,b=600,o=4:g+"; //plays g5
const char note9[] PROGMEM = ":d=128,b=600,o=4:a+"; //plays a5
const char note10[] PROGMEM = ":d=128,b=600,o=5:c+"; //plays c6
const char note11[] PROGMEM = ":d=128,b=600,o=5:d+"; //plays d6
const char note12[] PROGMEM = ":d=128,b=600,o=5:e+"; //plays e6
const char note13[] PROGMEM = ":d=128,b=600,o=5:g+"; //plays g6
const char note14[] PROGMEM = ":d=128,b=600,o=5:a+"; //plays a6
const char note15[] PROGMEM = ":d=128,b=600,o=6:c+"; //plays c7
//instruments
MusicWithoutDelay Insta(note0);
MusicWithoutDelay Instb(note1);
MusicWithoutDelay Instc(note2);
MusicWithoutDelay Instd(note3);
MusicWithoutDelay Inste(note4);
MusicWithoutDelay Instf(note5);
MusicWithoutDelay Instg(note6);
MusicWithoutDelay Insth(note7);
MusicWithoutDelay Insti(note8);
MusicWithoutDelay Instj(note9);
MusicWithoutDelay Instk(note10);
MusicWithoutDelay Instl(note11);
MusicWithoutDelay Instm(note12);
MusicWithoutDelay Instn(note13);
MusicWithoutDelay Insto(note14);
MusicWithoutDelay Instp(note15);
int count;
//int vol;
int VA0, VA1, VA2, VA3, VA4, VA5, VA6, VA7, VA8, VA9, VA10, VA11, VA12, VA13, VA14, VA15;
int TH0, TH1, TH2, TH3, TH4, TH5, TH6, TH7, TH8, TH9, TH10, TH11, TH12, TH13, TH14, TH15;
int VOL0, VOL1, VOL2, VOL3, VOL4, VOL5, VOL6, VOL7, VOL8, VOL9, VOL10, VOL11, VOL12, VOL13, VOL14, VOL15;
bool CV;
int ZER;
int ONE;
int TWO;
int THR;
int FOU;
int FIV;
int SIX;
int SEV;
int EIG;
int NIN;
int TEN;
int ELE;
int TWE;
int THT;
int FOT;
int FIT;
void setup() {
Serial.begin(115200);
//set the gain for multiplexed INs
adsa.setGain(GAIN_ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV
adsb.setGain(GAIN_ONE);
adsc.setGain(GAIN_ONE);
adsd.setGain(GAIN_ONE);
Serial.println("Ini MPX ");
adsa.begin();
adsb.begin();
adsc.begin();
adsd.begin();
Serial.println("MPX Ini");
Serial.println("Wait4MWD");
Serial.println("Ini MWD");
calib();
Insta.begin(CHA, TRIANGLE, ENVELOPE0, 0);
Instb.begin(TRIANGLE, ENVELOPE0, 0);
Instc.begin(TRIANGLE, ENVELOPE0, 0);
Instd.begin(TRIANGLE, ENVELOPE0, 0);
Inste.begin(TRIANGLE, ENVELOPE0, 0);
Instf.begin(TRIANGLE, ENVELOPE0, 0);
Instg.begin(TRIANGLE, ENVELOPE0, 0);
Insth.begin(TRIANGLE, ENVELOPE0, 0);
Insti.begin(TRIANGLE, ENVELOPE0, 0);
Instj.begin(TRIANGLE, ENVELOPE0, 0);
Instk.begin(TRIANGLE, ENVELOPE0, 0);
Instl.begin(TRIANGLE, ENVELOPE0, 0);
Instm.begin(TRIANGLE, ENVELOPE0, 0);
Instn.begin(TRIANGLE, ENVELOPE0, 0);
Insto.begin(TRIANGLE, ENVELOPE0, 0);
Instp.begin(TRIANGLE, ENVELOPE0, 0);
Insta.pause(true);
Instb.pause(true);
Instc.pause(true);
Instd.pause(true);
Inste.pause(true);
Instf.pause(true);
Instg.pause(true);
Insth.pause(true);
Insti.pause(true);
Instj.pause(true);
Instk.pause(true);
Instl.pause(true);
Instm.pause(true);
Instn.pause(true);
Insto.pause(true);
Instp.pause(true);
Serial.println("go!");
}
void calib() {
//calibrate the LDRs
Serial.println ("Calib");
TH0 = (adsa.readADC_SingleEnded(0) + 800);
TH1 = (adsa.readADC_SingleEnded(1) + 800);
TH2 = (adsa.readADC_SingleEnded(2) + 800);
TH3 = (adsa.readADC_SingleEnded(3) + 800);
TH4 = (adsb.readADC_SingleEnded(0) + 800);
TH5 = (adsb.readADC_SingleEnded(1) + 800);
TH6 = (adsb.readADC_SingleEnded(2) + 800);
TH7 = (adsb.readADC_SingleEnded(3) + 800);
TH8 = (adsc.readADC_SingleEnded(0) + 800);
TH9 = (adsc.readADC_SingleEnded(1) + 800);
TH10 = (adsc.readADC_SingleEnded(2) + 800);
TH11 = (adsc.readADC_SingleEnded(3) + 800);
TH12 = (adsd.readADC_SingleEnded(0) + 800);
TH13 = (adsd.readADC_SingleEnded(1) + 800);
TH14 = (adsd.readADC_SingleEnded(2) + 800);
TH15 = (adsd.readADC_SingleEnded(3) + 800);
Serial.print ("TH0=");
Serial.println (TH0);
Serial.print ("TH1=");
Serial.println (TH1);
Serial.print ("TH2=");
Serial.println (TH2);
Serial.print ("TH3=");
Serial.println (TH3);
Serial.print ("TH4=");
Serial.println (TH4);
Serial.print ("TH5=");
Serial.println (TH5);
Serial.print ("TH6=");
Serial.println (TH6);
Serial.print ("TH7=");
Serial.println (TH7);
Serial.print ("TH8=");
Serial.println (TH8);
Serial.print ("TH9=");
Serial.println (TH9);
Serial.print ("TH10=");
Serial.println (TH10);
Serial.print ("TH11=");
Serial.println (TH11);
Serial.print ("TH12=");
Serial.println (TH12);
Serial.print ("TH13=");
Serial.println (TH13);
Serial.print ("TH14=");
Serial.println (TH14);
Serial.print ("TH15=");
Serial.println (TH15);
}
void loop() {
CV = digitalRead(20);
count = 0;
Insta.update();
Instb.update();
Instc.update();
Instd.update();
Inste.update();
Instf.update();
Instg.update();
Insth.update();
Insti.update();
Instj.update();
Instk.update();
Instl.update();
Instm.update();
Instn.update();
Insto.update();
Instp.update();
//Messure LDR inputs
VA0 = adsa.readADC_SingleEnded(0);
VA1 = adsa.readADC_SingleEnded(1);
VA2 = adsa.readADC_SingleEnded(2);
VA3 = adsa.readADC_SingleEnded(3);
// Serial.print("VA0: "); Serial.println(VA0);
// Serial.print("VA1: "); Serial.println(VA1);
// Serial.print("VA2: "); Serial.println(VA2);
// Serial.print("VA3: "); Serial.println(VA3);
// Serial.println(" ");
VA4 = adsb.readADC_SingleEnded(0);
VA5 = adsb.readADC_SingleEnded(1);
VA6 = adsb.readADC_SingleEnded(2);
VA7 = adsb.readADC_SingleEnded(3);
// Serial.print("VA4: "); Serial.println(VA4);
// Serial.print("VA5: "); Serial.println(VA5);
// Serial.print("VA6: "); Serial.println(VA6);
// Serial.print("VA7: "); Serial.println(VA7);
// Serial.println(" ");
VA8 = adsc.readADC_SingleEnded(0);
VA9 = adsc.readADC_SingleEnded(1);
VA10 = adsc.readADC_SingleEnded(2);
VA11 = adsc.readADC_SingleEnded(3);
// Serial.print("VA8: "); Serial.println(VA8);
// Serial.print("VA9: "); Serial.println(VA9);
// Serial.print("VA10: "); Serial.println(VA10);
// Serial.print("VA11: "); Serial.println(VA11);
// Serial.println(" ");
VA12 = adsd.readADC_SingleEnded(0);
VA13 = adsd.readADC_SingleEnded(1);
VA14 = adsd.readADC_SingleEnded(2);
VA15 = adsd.readADC_SingleEnded(3);
// Serial.print("VA12: "); Serial.println(VA12);
// Serial.print("VA13: "); Serial.println(VA13);
// Serial.print("VA14: "); Serial.println(VA14);
// Serial.print("VA15: "); Serial.println(VA15);
// Serial.println(" ");
if (!CV) {
control();
}
if (CV) {
audio();
}
if (digitalRead(17) == LOW) {
calib();
}
}
void control() {
ZER = false;
ONE = false;
TWO = false;
THR = false;
FOU = false;
FIV = false;
SIX = false;
SEV = false;
EIG = false;
NIN = false;
TEN = false;
ELE = false;
TWE = false;
THT = false;
FOT = false;
FIT = false;
if (VA0 > TH0) {
digitalWrite(0, HIGH);
}
else if (VA0 < TH0) {
digitalWrite(0, LOW);
}
if (VA1 > TH1) {
digitalWrite(1, HIGH);
}
else if (VA1 < TH1) {
digitalWrite(1, LOW);
}
if (VA2 > TH2) {
digitalWrite(2, HIGH);
}
else if (VA2 < TH2) {
digitalWrite(2, LOW);
}
if (VA3 > TH3) {
digitalWrite(4, HIGH);
}
else if (VA3 < TH3) {
digitalWrite(4, LOW);
}
if (VA4 > TH4) {
digitalWrite(5, HIGH);
}
else if (VA4 < TH4) {
digitalWrite(5, LOW);
}
if (VA5 > TH5) {
digitalWrite(7, HIGH);
}
else if (VA5 < TH5) {
digitalWrite(7, LOW);
}
if (VA6 > TH6) {
digitalWrite(6, HIGH);
}
else if (VA6 < TH6) {
digitalWrite(6, LOW);
}
if (VA7 > TH7) {
digitalWrite(8, HIGH);
}
else if (VA7 < TH7) {
digitalWrite(8, LOW);
}
if (VA8 > TH8) {
digitalWrite(9, HIGH);
}
else if (VA8 < TH8) {
digitalWrite(9, LOW);
}
if (VA9 > TH9) {
digitalWrite(10, HIGH);
}
else if (VA9 < TH9) {
digitalWrite(10, LOW);
}
if (VA10 > TH10) {
digitalWrite(12, HIGH);
}
else if (VA10 < TH10) {
digitalWrite(12, LOW);
}
if (VA11 > TH11) {
digitalWrite(11, HIGH);
}
else if (VA11 < TH11) {
digitalWrite(11, LOW);
}
if (VA12 > TH12) {
digitalWrite(13, HIGH);
}
else if (VA12 < TH12) {
digitalWrite(13, LOW);
}
if (VA13 > TH13) {
digitalWrite(14, HIGH);
}
else if (VA13 < TH13) {
digitalWrite(14, LOW);
}
if (VA14 > TH14) {
digitalWrite(15, HIGH);
}
else if (VA14 < TH14) {
digitalWrite(15, LOW);
}
if (VA15 > TH15) {
digitalWrite(16, HIGH);
}
else if (VA15 < TH15) {
digitalWrite(16, LOW);
}
}
void audio () {
digitalWrite(0, LOW);
digitalWrite(1, LOW);
digitalWrite(2, LOW);
digitalWrite(4, LOW);
digitalWrite(5, LOW);
digitalWrite(6, LOW);
digitalWrite(7, LOW);
digitalWrite(8, LOW);
digitalWrite(9, LOW);
digitalWrite(10, LOW);
digitalWrite(11, LOW);
digitalWrite(12, LOW);
digitalWrite(13, LOW);
digitalWrite(14, LOW);
digitalWrite(15, LOW);
digitalWrite(16, LOW);
if (VA0 > TH0) {
count++;
ZER = true;
}
else if (VA0 < TH0) {
ZER = false;
}
if (VA1 > TH1) {
count++;
ONE = true;
}
else if (VA1 < TH1) {
ONE = false;
}
if (VA2 > TH2) {
count++;
TWO = true;
}
else if (VA2 < TH2) {
TWO = false;
}
if (VA3 > TH3) {
count++;
THR = true;
}
else if (VA3 < TH3) {
THR = false;
}
if (VA4 > TH4) {
count++;
FOU = true;
}
else if (VA4 < TH4) {
FOU = false;
}
if (VA5 > TH5) {
count++;
FIV = true;
}
else if (VA5 < TH5) {
FIV = false;
}
if (VA6 > TH6) {
count++;
SIX = true;
}
else if (VA6 < TH6) {
SIX = false;
}
if (VA7 > TH7) {
count++;
SEV = true;
}
else if (VA7 < TH7) {
SEV = false;
}
if (VA8 > TH8) {
count++;
EIG = true;
}
else if (VA8 < TH8) {
EIG = false;
}
if (VA9 > TH9) {
count++;
NIN = true;
}
else if (VA9 < TH9) {
NIN = false;
}
if (VA10 > TH10) {
count++;
TEN = true;
}
else if (VA10 < TH10) {
TEN = false;
}
if (VA11 > TH11) {
count++;
ELE = true;
}
else if (VA11 < TH11) {
ELE = false;
}
if (VA12 > TH12) {
count++;
TWE = true;
}
else if (VA12 < TH12) {
TWE = false;
}
if (VA13 > TH13) {
count++;
THT = true;
}
else if (VA13 < TH13) {
THT = false;
}
if (VA14 > TH14) {
count++;
FOT = true;
}
else if (VA14 < TH14) {
FOT = false;
}
if (VA15 > TH15) {
count++;
FIV = true;
}
else if (VA15 < TH15) {
FIV = false;
}
if (ZER) {
VOL0 = 50/count+constrain(map(VA0, TH0, TH0+5000, 0, 65), 0, 65);
Insta.play(true);
Insta.setVolume(VOL0);
// Serial.print("Tone0 active at vol:");
// Serial.println(VOL0);
// Serial.println(VA0);
}
if (!ZER) {
Insta.pause (true);
}
if (ONE) {
VOL1 = 50/count+constrain(map(VA1, TH1, TH1+5000, 0, 65), 0, 65);
Instb.play(true);
Instb.setVolume(VOL1);
// Serial.print("Tone1 active at vol:");
// Serial.println(VOL1);
// Serial.println(VA1);
}
if (!ONE) {
Instb.pause (true);
}
if (TWO) {
VOL2 = 50/count+constrain(map(VA2, TH2, TH2+5000, 0, 65), 0, 65);
Instc.play(true);
Instc.setVolume(VOL2);
// Serial.print("Tone2 active at vol:");
// Serial.println(VOL2);
// Serial.println(VA2);
}
if (!TWO) {
Instc.pause (true);
}
if (THR) {
VOL3 = 50/count+constrain(map(VA3, TH3, TH3+5000, 0, 65), 0, 65);
Instd.play(true);
Instd.setVolume(VOL3);
// Serial.print("Tone3 active at vol:");
// Serial.println(VOL3);
// Serial.println(VA3);
}
if (!THR) {
Instd.pause (true);
}
if (FOU) {
VOL4 = 50/count+constrain(map(VA4, TH4, TH4+5000, 0, 65), 0, 65);
Inste.play(true);
Inste.setVolume(VOL4);
// Serial.print("Tone4 active at vol:");
// Serial.println(VOL4);
// Serial.println(VA4);
}
if (!FOU) {
Inste.pause (true);
}
if (FIV) {
VOL5 = 50/count+constrain(map(VA5, TH5, TH5+5000, 0, 65), 0, 65);
Instf.play(true);
Instf.setVolume(VOL5);
// Serial.print("Tone5 active at vol:");
// Serial.println(VOL5);
// Serial.println(VA5);
}
if (!FIV) {
Instf.pause (true);
}
if (SIX) {
VOL6 = 50/count+constrain(map(VA6, TH6, TH6+5000, 0, 65), 0, 65);
Instg.play(true);
Instg.setVolume(VOL6);
// Serial.print("Tone6 active at vol:");
// Serial.println(VOL6);
// Serial.println(VA6);
}
if (!SIX) {
Instg.pause (true);
}
if (SEV) {
VOL7 = 50/count+constrain(map(VA7, TH7, TH7+5000, 0, 65), 0, 65);
Insth.play(true);
Insth.setVolume(VOL7);
// Serial.print("Tone7 active at vol:");
// Serial.println(VOL7);
// Serial.println(VA7);
}
if (!SEV) {
Insth.pause (true);
}
if (EIG) {
VOL8 = 50/count+constrain(map(VA8, TH8, TH8+5000, 0, 65), 0, 65);
Insti.play(true);
Insti.setVolume(VOL8);
// Serial.print("Tone8 active at vol:");
// Serial.println(VOL8);
// Serial.println(VA8);
}
if (!EIG) {
Insti.pause (true);
}
if (NIN) {
VOL9 = 50/count+constrain(map(VA9, TH9, TH9+5000, 0, 65), 0, 65);
Instj.play(true);
Instj.setVolume(VOL9);
// Serial.print("Tone9 active at vol:");
// Serial.println(VOL9);
// Serial.println(VA9);
}
if (!NIN) {
Instk.pause (true);
}
if (TEN) {
VOL10 = 50/count+constrain(map(VA10, TH10, TH10+5000, 0, 65), 0, 65);
Instk.play(true);
Instk.setVolume(VOL10);
// Serial.print("Tone10 active at vol:");
// Serial.println(VOL10);
// Serial.println(VA10);
}
if (!TEN) {
Instk.pause (true);
}
if (ELE) {
VOL11 = 50/count+constrain(map(VA11, TH11, TH11+5000, 0, 65), 0, 65);
Instl.play(true);
Instl.setVolume(VOL11);
// Serial.print("Tone11 active at vol:");
// Serial.println(VOL11);
// Serial.println(VA11);
}
if (!ELE) {
Instl.pause (true);
}
if (TWE) {
VOL12 = 50/count+constrain(map(VA12, TH12, TH12+5000, 0, 65), 0, 65);
Instm.play(true);
Instm.setVolume(VOL12);
// Serial.print("Tone12 active at vol:");
// Serial.println(VOL12);
// Serial.println(VA12);
}
if (!TWE) {
Instm.pause (true);
}
if (THT) {
VOL13 = 50/count+constrain(map(VA13, TH13, TH13+5000, 0, 65), 0, 65);
Instn.play(true);
Instn.setVolume(VOL13);
// Serial.print("Tone13 active at vol:");
// Serial.println(VOL13);
// Serial.println(VA13);
}
if (!THT) {
Instn.pause (true);
}
if (FOT) {
VOL14 = 50/count+constrain(map(VA14, TH14, TH14+5000, 0, 65), 0, 65);
Insto.play(true);
Insto.setVolume(VOL14);
// Serial.print("Tone14 active at vol:");
// Serial.println(VOL14);
// Serial.println(VA14);
}
if (!FOT) {
Insto.pause (true);
}
if (FIT) {
VOL15 = 50/count+constrain(map(VA15, TH15, TH15+5000, 0, 65), 0, 65);
Instp.play(true);
Instp.setVolume(VOL15);
// Serial.print("Tone15 active at vol:");
// Serial.println(VOL15);
// Serial.println(VA15);
}
if (!FIT) {
Instp.pause (true);
}
}
// Serial.print("Intruments playing = ");
// Serial.println(count);
//Play notes and mix down (set volume depending on number of notes playing)
Loading…
Cancel
Save