You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

9.2 KiB

NLTK - Part of Speech

In [ ]:
import nltk
import random
In [ ]:
lines = open('txt/language.txt').readlines()
sentence = random.choice(lines)
print(sentence)

Tokens

In [ ]:
tokens = nltk.word_tokenize(sentence)
print(tokens)

Part of Speech "tags"

In [ ]:
tagged = nltk.pos_tag(tokens)
print(tagged)

Now, you could select for example all the type of verbs:

In [ ]:
selection = []

for word, tag in tagged:
    if 'VB' in tag:
        selection.append(word)

print(selection)

Where do these tags come from?

An off-the-shelf tagger is available for English. It uses the Penn Treebank tagset.

From: http://www.nltk.org/api/nltk.tag.html#module-nltk.tag

NLTK provides documentation for each tag, which can be queried using the tag, e.g. nltk.help.upenn_tagset('RB').

From: http://www.nltk.org/book_1ed/ch05.html

In [ ]:
nltk.help.upenn_tagset('PRP')

An alphabetical list of part-of-speech tags used in the Penn Treebank Project (link):

Number
Tag
Description
1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP\$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb