# util/_collections.py # Copyright (C) 2005-2013 the SQLAlchemy authors and contributors # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Collection classes and helpers.""" import itertools import weakref import operator from .compat import threading EMPTY_SET = frozenset() class KeyedTuple(tuple): """``tuple`` subclass that adds labeled names. E.g.:: >>> k = KeyedTuple([1, 2, 3], labels=["one", "two", "three"]) >>> k.one 1 >>> k.two 2 Result rows returned by :class:`.Query` that contain multiple ORM entities and/or column expressions make use of this class to return rows. The :class:`.KeyedTuple` exhibits similar behavior to the ``collections.namedtuple()`` construct provided in the Python standard library, however is architected very differently. Unlike ``collections.namedtuple()``, :class:`.KeyedTuple` is does not rely on creation of custom subtypes in order to represent a new series of keys, instead each :class:`.KeyedTuple` instance receives its list of keys in place. The subtype approach of ``collections.namedtuple()`` introduces significant complexity and performance overhead, which is not necessary for the :class:`.Query` object's use case. .. versionchanged:: 0.8 Compatibility methods with ``collections.namedtuple()`` have been added including :attr:`.KeyedTuple._fields` and :meth:`.KeyedTuple._asdict`. .. seealso:: :ref:`ormtutorial_querying` """ def __new__(cls, vals, labels=None): t = tuple.__new__(cls, vals) t._labels = [] if labels: t.__dict__.update(zip(labels, vals)) t._labels = labels return t def keys(self): """Return a list of string key names for this :class:`.KeyedTuple`. .. seealso:: :attr:`.KeyedTuple._fields` """ return [l for l in self._labels if l is not None] @property def _fields(self): """Return a tuple of string key names for this :class:`.KeyedTuple`. This method provides compatibility with ``collections.namedtuple()``. .. versionadded:: 0.8 .. seealso:: :meth:`.KeyedTuple.keys` """ return tuple(self.keys()) def _asdict(self): """Return the contents of this :class:`.KeyedTuple` as a dictionary. This method provides compatibility with ``collections.namedtuple()``, with the exception that the dictionary returned is **not** ordered. .. versionadded:: 0.8 """ return dict((key, self.__dict__[key]) for key in self.keys()) class ImmutableContainer(object): def _immutable(self, *arg, **kw): raise TypeError("%s object is immutable" % self.__class__.__name__) __delitem__ = __setitem__ = __setattr__ = _immutable class immutabledict(ImmutableContainer, dict): clear = pop = popitem = setdefault = \ update = ImmutableContainer._immutable def __new__(cls, *args): new = dict.__new__(cls) dict.__init__(new, *args) return new def __init__(self, *args): pass def __reduce__(self): return immutabledict, (dict(self), ) def union(self, d): if not self: return immutabledict(d) else: d2 = immutabledict(self) dict.update(d2, d) return d2 def __repr__(self): return "immutabledict(%s)" % dict.__repr__(self) class Properties(object): """Provide a __getattr__/__setattr__ interface over a dict.""" def __init__(self, data): self.__dict__['_data'] = data def __len__(self): return len(self._data) def __iter__(self): return self._data.itervalues() def __add__(self, other): return list(self) + list(other) def __setitem__(self, key, object): self._data[key] = object def __getitem__(self, key): return self._data[key] def __delitem__(self, key): del self._data[key] def __setattr__(self, key, object): self._data[key] = object def __getstate__(self): return {'_data': self.__dict__['_data']} def __setstate__(self, state): self.__dict__['_data'] = state['_data'] def __getattr__(self, key): try: return self._data[key] except KeyError: raise AttributeError(key) def __contains__(self, key): return key in self._data def as_immutable(self): """Return an immutable proxy for this :class:`.Properties`.""" return ImmutableProperties(self._data) def update(self, value): self._data.update(value) def get(self, key, default=None): if key in self: return self[key] else: return default def keys(self): return self._data.keys() def values(self): return self._data.values() def items(self): return self._data.items() def has_key(self, key): return key in self._data def clear(self): self._data.clear() class OrderedProperties(Properties): """Provide a __getattr__/__setattr__ interface with an OrderedDict as backing store.""" def __init__(self): Properties.__init__(self, OrderedDict()) class ImmutableProperties(ImmutableContainer, Properties): """Provide immutable dict/object attribute to an underlying dictionary.""" class OrderedDict(dict): """A dict that returns keys/values/items in the order they were added.""" def __init__(self, ____sequence=None, **kwargs): self._list = [] if ____sequence is None: if kwargs: self.update(**kwargs) else: self.update(____sequence, **kwargs) def clear(self): self._list = [] dict.clear(self) def copy(self): return self.__copy__() def __copy__(self): return OrderedDict(self) def sort(self, *arg, **kw): self._list.sort(*arg, **kw) def update(self, ____sequence=None, **kwargs): if ____sequence is not None: if hasattr(____sequence, 'keys'): for key in ____sequence.keys(): self.__setitem__(key, ____sequence[key]) else: for key, value in ____sequence: self[key] = value if kwargs: self.update(kwargs) def setdefault(self, key, value): if key not in self: self.__setitem__(key, value) return value else: return self.__getitem__(key) def __iter__(self): return iter(self._list) def values(self): return [self[key] for key in self._list] def itervalues(self): return iter([self[key] for key in self._list]) def keys(self): return list(self._list) def iterkeys(self): return iter(self.keys()) def items(self): return [(key, self[key]) for key in self.keys()] def iteritems(self): return iter(self.items()) def __setitem__(self, key, object): if key not in self: try: self._list.append(key) except AttributeError: # work around Python pickle loads() with # dict subclass (seems to ignore __setstate__?) self._list = [key] dict.__setitem__(self, key, object) def __delitem__(self, key): dict.__delitem__(self, key) self._list.remove(key) def pop(self, key, *default): present = key in self value = dict.pop(self, key, *default) if present: self._list.remove(key) return value def popitem(self): item = dict.popitem(self) self._list.remove(item[0]) return item class OrderedSet(set): def __init__(self, d=None): set.__init__(self) self._list = [] if d is not None: self.update(d) def add(self, element): if element not in self: self._list.append(element) set.add(self, element) def remove(self, element): set.remove(self, element) self._list.remove(element) def insert(self, pos, element): if element not in self: self._list.insert(pos, element) set.add(self, element) def discard(self, element): if element in self: self._list.remove(element) set.remove(self, element) def clear(self): set.clear(self) self._list = [] def __getitem__(self, key): return self._list[key] def __iter__(self): return iter(self._list) def __add__(self, other): return self.union(other) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, self._list) __str__ = __repr__ def update(self, iterable): for e in iterable: if e not in self: self._list.append(e) set.add(self, e) return self __ior__ = update def union(self, other): result = self.__class__(self) result.update(other) return result __or__ = union def intersection(self, other): other = set(other) return self.__class__(a for a in self if a in other) __and__ = intersection def symmetric_difference(self, other): other = set(other) result = self.__class__(a for a in self if a not in other) result.update(a for a in other if a not in self) return result __xor__ = symmetric_difference def difference(self, other): other = set(other) return self.__class__(a for a in self if a not in other) __sub__ = difference def intersection_update(self, other): other = set(other) set.intersection_update(self, other) self._list = [a for a in self._list if a in other] return self __iand__ = intersection_update def symmetric_difference_update(self, other): set.symmetric_difference_update(self, other) self._list = [a for a in self._list if a in self] self._list += [a for a in other._list if a in self] return self __ixor__ = symmetric_difference_update def difference_update(self, other): set.difference_update(self, other) self._list = [a for a in self._list if a in self] return self __isub__ = difference_update class IdentitySet(object): """A set that considers only object id() for uniqueness. This strategy has edge cases for builtin types- it's possible to have two 'foo' strings in one of these sets, for example. Use sparingly. """ _working_set = set def __init__(self, iterable=None): self._members = dict() if iterable: for o in iterable: self.add(o) def add(self, value): self._members[id(value)] = value def __contains__(self, value): return id(value) in self._members def remove(self, value): del self._members[id(value)] def discard(self, value): try: self.remove(value) except KeyError: pass def pop(self): try: pair = self._members.popitem() return pair[1] except KeyError: raise KeyError('pop from an empty set') def clear(self): self._members.clear() def __cmp__(self, other): raise TypeError('cannot compare sets using cmp()') def __eq__(self, other): if isinstance(other, IdentitySet): return self._members == other._members else: return False def __ne__(self, other): if isinstance(other, IdentitySet): return self._members != other._members else: return True def issubset(self, iterable): other = type(self)(iterable) if len(self) > len(other): return False for m in itertools.ifilterfalse(other._members.__contains__, self._members.iterkeys()): return False return True def __le__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return self.issubset(other) def __lt__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return len(self) < len(other) and self.issubset(other) def issuperset(self, iterable): other = type(self)(iterable) if len(self) < len(other): return False for m in itertools.ifilterfalse(self._members.__contains__, other._members.iterkeys()): return False return True def __ge__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return self.issuperset(other) def __gt__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return len(self) > len(other) and self.issuperset(other) def union(self, iterable): result = type(self)() # testlib.pragma exempt:__hash__ members = self._member_id_tuples() other = _iter_id(iterable) result._members.update(self._working_set(members).union(other)) return result def __or__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return self.union(other) def update(self, iterable): self._members = self.union(iterable)._members def __ior__(self, other): if not isinstance(other, IdentitySet): return NotImplemented self.update(other) return self def difference(self, iterable): result = type(self)() # testlib.pragma exempt:__hash__ members = self._member_id_tuples() other = _iter_id(iterable) result._members.update(self._working_set(members).difference(other)) return result def __sub__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return self.difference(other) def difference_update(self, iterable): self._members = self.difference(iterable)._members def __isub__(self, other): if not isinstance(other, IdentitySet): return NotImplemented self.difference_update(other) return self def intersection(self, iterable): result = type(self)() # testlib.pragma exempt:__hash__ members = self._member_id_tuples() other = _iter_id(iterable) result._members.update(self._working_set(members).intersection(other)) return result def __and__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return self.intersection(other) def intersection_update(self, iterable): self._members = self.intersection(iterable)._members def __iand__(self, other): if not isinstance(other, IdentitySet): return NotImplemented self.intersection_update(other) return self def symmetric_difference(self, iterable): result = type(self)() # testlib.pragma exempt:__hash__ members = self._member_id_tuples() other = _iter_id(iterable) result._members.update( self._working_set(members).symmetric_difference(other)) return result def _member_id_tuples(self): return ((id(v), v) for v in self._members.itervalues()) def __xor__(self, other): if not isinstance(other, IdentitySet): return NotImplemented return self.symmetric_difference(other) def symmetric_difference_update(self, iterable): self._members = self.symmetric_difference(iterable)._members def __ixor__(self, other): if not isinstance(other, IdentitySet): return NotImplemented self.symmetric_difference(other) return self def copy(self): return type(self)(self._members.itervalues()) __copy__ = copy def __len__(self): return len(self._members) def __iter__(self): return self._members.itervalues() def __hash__(self): raise TypeError('set objects are unhashable') def __repr__(self): return '%s(%r)' % (type(self).__name__, self._members.values()) class WeakSequence(object): def __init__(self, __elements=()): self._storage = [ weakref.ref(element, self._remove) for element in __elements ] def append(self, item): self._storage.append(weakref.ref(item, self._remove)) def _remove(self, ref): self._storage.remove(ref) def __len__(self): return len(self._storage) def __iter__(self): return (obj for obj in (ref() for ref in self._storage) if obj is not None) def __getitem__(self, index): try: obj = self._storage[index] except KeyError: raise IndexError("Index %s out of range" % index) else: return obj() class OrderedIdentitySet(IdentitySet): class _working_set(OrderedSet): # a testing pragma: exempt the OIDS working set from the test suite's # "never call the user's __hash__" assertions. this is a big hammer, # but it's safe here: IDS operates on (id, instance) tuples in the # working set. __sa_hash_exempt__ = True def __init__(self, iterable=None): IdentitySet.__init__(self) self._members = OrderedDict() if iterable: for o in iterable: self.add(o) class PopulateDict(dict): """A dict which populates missing values via a creation function. Note the creation function takes a key, unlike collections.defaultdict. """ def __init__(self, creator): self.creator = creator def __missing__(self, key): self[key] = val = self.creator(key) return val # Define collections that are capable of storing # ColumnElement objects as hashable keys/elements. # At this point, these are mostly historical, things # used to be more complicated. column_set = set column_dict = dict ordered_column_set = OrderedSet populate_column_dict = PopulateDict def unique_list(seq, hashfunc=None): seen = {} if not hashfunc: return [x for x in seq if x not in seen and not seen.__setitem__(x, True)] else: return [x for x in seq if hashfunc(x) not in seen and not seen.__setitem__(hashfunc(x), True)] class UniqueAppender(object): """Appends items to a collection ensuring uniqueness. Additional appends() of the same object are ignored. Membership is determined by identity (``is a``) not equality (``==``). """ def __init__(self, data, via=None): self.data = data self._unique = {} if via: self._data_appender = getattr(data, via) elif hasattr(data, 'append'): self._data_appender = data.append elif hasattr(data, 'add'): self._data_appender = data.add def append(self, item): id_ = id(item) if id_ not in self._unique: self._data_appender(item) self._unique[id_] = True def __iter__(self): return iter(self.data) def to_list(x, default=None): if x is None: return default if not isinstance(x, (list, tuple)): return [x] else: return x def to_set(x): if x is None: return set() if not isinstance(x, set): return set(to_list(x)) else: return x def to_column_set(x): if x is None: return column_set() if not isinstance(x, column_set): return column_set(to_list(x)) else: return x def update_copy(d, _new=None, **kw): """Copy the given dict and update with the given values.""" d = d.copy() if _new: d.update(_new) d.update(**kw) return d def flatten_iterator(x): """Given an iterator of which further sub-elements may also be iterators, flatten the sub-elements into a single iterator. """ for elem in x: if not isinstance(elem, basestring) and hasattr(elem, '__iter__'): for y in flatten_iterator(elem): yield y else: yield elem class LRUCache(dict): """Dictionary with 'squishy' removal of least recently used items. """ def __init__(self, capacity=100, threshold=.5): self.capacity = capacity self.threshold = threshold self._counter = 0 def _inc_counter(self): self._counter += 1 return self._counter def __getitem__(self, key): item = dict.__getitem__(self, key) item[2] = self._inc_counter() return item[1] def values(self): return [i[1] for i in dict.values(self)] def setdefault(self, key, value): if key in self: return self[key] else: self[key] = value return value def __setitem__(self, key, value): item = dict.get(self, key) if item is None: item = [key, value, self._inc_counter()] dict.__setitem__(self, key, item) else: item[1] = value self._manage_size() def _manage_size(self): while len(self) > self.capacity + self.capacity * self.threshold: by_counter = sorted(dict.values(self), key=operator.itemgetter(2), reverse=True) for item in by_counter[self.capacity:]: try: del self[item[0]] except KeyError: # if we couldnt find a key, most # likely some other thread broke in # on us. loop around and try again break class ScopedRegistry(object): """A Registry that can store one or multiple instances of a single class on the basis of a "scope" function. The object implements ``__call__`` as the "getter", so by calling ``myregistry()`` the contained object is returned for the current scope. :param createfunc: a callable that returns a new object to be placed in the registry :param scopefunc: a callable that will return a key to store/retrieve an object. """ def __init__(self, createfunc, scopefunc): """Construct a new :class:`.ScopedRegistry`. :param createfunc: A creation function that will generate a new value for the current scope, if none is present. :param scopefunc: A function that returns a hashable token representing the current scope (such as, current thread identifier). """ self.createfunc = createfunc self.scopefunc = scopefunc self.registry = {} def __call__(self): key = self.scopefunc() try: return self.registry[key] except KeyError: return self.registry.setdefault(key, self.createfunc()) def has(self): """Return True if an object is present in the current scope.""" return self.scopefunc() in self.registry def set(self, obj): """Set the value forthe current scope.""" self.registry[self.scopefunc()] = obj def clear(self): """Clear the current scope, if any.""" try: del self.registry[self.scopefunc()] except KeyError: pass class ThreadLocalRegistry(ScopedRegistry): """A :class:`.ScopedRegistry` that uses a ``threading.local()`` variable for storage. """ def __init__(self, createfunc): self.createfunc = createfunc self.registry = threading.local() def __call__(self): try: return self.registry.value except AttributeError: val = self.registry.value = self.createfunc() return val def has(self): return hasattr(self.registry, "value") def set(self, obj): self.registry.value = obj def clear(self): try: del self.registry.value except AttributeError: pass def _iter_id(iterable): """Generator: ((id(o), o) for o in iterable).""" for item in iterable: yield id(item), item