You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

90 lines
2.9 KiB
HTML

5 years ago
<!DOCTYPE html>
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Tasks of the Contingent Librarian</title>
<link rel="stylesheet" type="text/css" href="tasks.css">
<script src="tasks.js"></script>
</head>
<body>
<div class="card"><DOCUMENT_FRAGMENT><div class="mw-parser-output"><h2><span class="mw-headline" id="Pre-processing_for_OCR">Pre-processing for OCR</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/mw-mediadesign/index.php?title=User:Simon/self_directed_research/OCR_preprocessing&amp;action=edit&amp;section=1" title="Edit section: Pre-processing for OCR">edit</a><span class="mw-editsection-bracket">]</span></span></h2>
<p>This script applies transformations to the image before running OCR, resulting in a clearer result:
</p><p><br>
</p>
<pre># import the necessary packages
#from PIL
import Image
import pytesseract
import argparse
import cv2
import os
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image to be OCR'd")
ap.add_argument("-p", "--preprocess", type=str, default="thresh",
help="type of preprocessing to be done")
args = vars(ap.parse_args())
# load the example image and convert it to grayscale
image = cv2.imread(args["image"])
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# check to see if we should apply thresholding to preprocess the
# image
if args["preprocess"] == "thresh":
gray = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# make a check to see if median blurring should be done to remove
# noise
elif args["preprocess"] == "blur":
gray = cv2.medianBlur(gray, 3)
# write the grayscale image to disk as a temporary file so we can
# apply OCR to it
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)
# load the image as a PIL/Pillow image, apply OCR, and then delete
# the temporary file
text = pytesseract.image_to_string(Image.open(filename))
os.remove(filename)
print(text)
# show the output images
cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)
</pre>
<!--
NewPP limit report
Cached time: 20200610083233
Cache expiry: 86400
Dynamic content: false
CPU time usage: 0.002 seconds
Real time usage: 0.003 seconds
Preprocessor visited node count: 5/1000000
Preprocessor generated node count: 28/1000000
Postexpand include size: 0/2097152 bytes
Template argument size: 0/2097152 bytes
Highest expansion depth: 2/40
Expensive parser function count: 0/100
Unstrip recursion depth: 0/20
Unstrip postexpand size: 1327/5000000 bytes
-->
<!--
Transclusion expansion time report (%,ms,calls,template)
100.00% 0.000 1 -total
-->
<!-- Saved in parser cache with key wdka_mw_mediadesign-mw_:pcache:idhash:28533-0!canonical and timestamp 20200610083233 and revision id 173586
-->
</div></DOCUMENT_FRAGMENT></div>
</body>
</html>