You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

153 lines
3.7 KiB
Python

from numpy.lib import add_newdoc
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU',
"""
LU factorization of a sparse matrix.
Factorization is represented as::
Pr * A * Pc = L * U
To construct these `SuperLU` objects, call the `splu` and `spilu`
functions.
Attributes
----------
shape
nnz
perm_c
perm_r
L
U
Methods
-------
solve
Notes
-----
.. versionadded:: 0.14.0
Examples
--------
The LU decomposition can be used to solve matrix equations. Consider:
>>> import numpy as np
>>> from scipy.sparse import csc_matrix, linalg as sla
>>> A = csc_matrix([[1,2,0,4],[1,0,0,1],[1,0,2,1],[2,2,1,0.]])
This can be solved for a given right-hand side:
>>> lu = sla.splu(A)
>>> b = np.array([1, 2, 3, 4])
>>> x = lu.solve(b)
>>> A.dot(x)
array([ 1., 2., 3., 4.])
The ``lu`` object also contains an explicit representation of the
decomposition. The permutations are represented as mappings of
indices:
>>> lu.perm_r
array([0, 2, 1, 3], dtype=int32)
>>> lu.perm_c
array([2, 0, 1, 3], dtype=int32)
The L and U factors are sparse matrices in CSC format:
>>> lu.L.A
array([[ 1. , 0. , 0. , 0. ],
[ 0. , 1. , 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 1. , 0.5, 0.5, 1. ]])
>>> lu.U.A
array([[ 2., 0., 1., 4.],
[ 0., 2., 1., 1.],
[ 0., 0., 1., 1.],
[ 0., 0., 0., -5.]])
The permutation matrices can be constructed:
>>> Pr = csc_matrix((np.ones(4), (lu.perm_r, np.arange(4))))
>>> Pc = csc_matrix((np.ones(4), (np.arange(4), lu.perm_c)))
We can reassemble the original matrix:
>>> (Pr.T * (lu.L * lu.U) * Pc.T).A
array([[ 1., 2., 0., 4.],
[ 1., 0., 0., 1.],
[ 1., 0., 2., 1.],
[ 2., 2., 1., 0.]])
""")
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU', ('solve',
"""
solve(rhs[, trans])
Solves linear system of equations with one or several right-hand sides.
Parameters
----------
rhs : ndarray, shape (n,) or (n, k)
Right hand side(s) of equation
trans : {'N', 'T', 'H'}, optional
Type of system to solve::
'N': A * x == rhs (default)
'T': A^T * x == rhs
'H': A^H * x == rhs
i.e., normal, transposed, and hermitian conjugate.
Returns
-------
x : ndarray, shape ``rhs.shape``
Solution vector(s)
"""))
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU', ('L',
"""
Lower triangular factor with unit diagonal as a
`scipy.sparse.csc_matrix`.
.. versionadded:: 0.14.0
"""))
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU', ('U',
"""
Upper triangular factor as a `scipy.sparse.csc_matrix`.
.. versionadded:: 0.14.0
"""))
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU', ('shape',
"""
Shape of the original matrix as a tuple of ints.
"""))
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU', ('nnz',
"""
Number of nonzero elements in the matrix.
"""))
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU', ('perm_c',
"""
Permutation Pc represented as an array of indices.
The column permutation matrix can be reconstructed via:
>>> Pc = np.zeros((n, n))
>>> Pc[np.arange(n), perm_c] = 1
"""))
add_newdoc('scipy.sparse.linalg.dsolve._superlu', 'SuperLU', ('perm_r',
"""
Permutation Pr represented as an array of indices.
The row permutation matrix can be reconstructed via:
>>> Pr = np.zeros((n, n))
>>> Pr[perm_r, np.arange(n)] = 1
"""))