from numpy import zeros, asarray, eye, poly1d, hstack, r_ from scipy import linalg __all__ = ["pade"] def pade(an, m, n=None): """ Return Pade approximation to a polynomial as the ratio of two polynomials. Parameters ---------- an : (N,) array_like Taylor series coefficients. m : int The order of the returned approximating polynomial `q`. n : int, optional The order of the returned approximating polynomial `p`. By default, the order is ``len(an)-m``. Returns ------- p, q : Polynomial class The Pade approximation of the polynomial defined by `an` is ``p(x)/q(x)``. Examples -------- >>> from scipy.interpolate import pade >>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0] >>> p, q = pade(e_exp, 2) >>> e_exp.reverse() >>> e_poly = np.poly1d(e_exp) Compare ``e_poly(x)`` and the Pade approximation ``p(x)/q(x)`` >>> e_poly(1) 2.7166666666666668 >>> p(1)/q(1) 2.7179487179487181 """ an = asarray(an) if n is None: n = len(an) - 1 - m if n < 0: raise ValueError("Order of q must be smaller than len(an)-1.") if n < 0: raise ValueError("Order of p must be greater than 0.") N = m + n if N > len(an)-1: raise ValueError("Order of q+p must be smaller than len(an).") an = an[:N+1] Akj = eye(N+1, n+1, dtype=an.dtype) Bkj = zeros((N+1, m), dtype=an.dtype) for row in range(1, m+1): Bkj[row,:row] = -(an[:row])[::-1] for row in range(m+1, N+1): Bkj[row,:] = -(an[row-m:row])[::-1] C = hstack((Akj, Bkj)) pq = linalg.solve(C, an) p = pq[:n+1] q = r_[1.0, pq[n+1:]] return poly1d(p[::-1]), poly1d(q[::-1])