import sys import copy import heapq import collections import functools import numpy as np from scipy._lib._util import MapWrapper class LRUDict(collections.OrderedDict): def __init__(self, max_size): self.__max_size = max_size def __setitem__(self, key, value): existing_key = (key in self) super(LRUDict, self).__setitem__(key, value) if existing_key: self.move_to_end(key) elif len(self) > self.__max_size: self.popitem(last=False) def update(self, other): # Not needed below raise NotImplementedError() class SemiInfiniteFunc(object): """ Argument transform from (start, +-oo) to (0, 1) """ def __init__(self, func, start, infty): self._func = func self._start = start self._sgn = -1 if infty < 0 else 1 # Overflow threshold for the 1/t**2 factor self._tmin = sys.float_info.min**0.5 def get_t(self, x): z = self._sgn * (x - self._start) + 1 if z == 0: # Can happen only if point not in range return np.inf return 1 / z def __call__(self, t): if t < self._tmin: return 0.0 else: x = self._start + self._sgn * (1 - t) / t f = self._func(x) return self._sgn * (f / t) / t class DoubleInfiniteFunc(object): """ Argument transform from (-oo, oo) to (-1, 1) """ def __init__(self, func): self._func = func # Overflow threshold for the 1/t**2 factor self._tmin = sys.float_info.min**0.5 def get_t(self, x): s = -1 if x < 0 else 1 return s / (abs(x) + 1) def __call__(self, t): if abs(t) < self._tmin: return 0.0 else: x = (1 - abs(t)) / t f = self._func(x) return (f / t) / t def _max_norm(x): return np.amax(abs(x)) def _get_sizeof(obj): try: return sys.getsizeof(obj) except TypeError: # occurs on pypy if hasattr(obj, '__sizeof__'): return int(obj.__sizeof__()) return 64 class _Bunch(object): def __init__(self, **kwargs): self.__keys = kwargs.keys() self.__dict__.update(**kwargs) def __repr__(self): return "_Bunch({})".format(", ".join("{}={}".format(k, repr(self.__dict__[k])) for k in self.__keys)) def quad_vec(f, a, b, epsabs=1e-200, epsrel=1e-8, norm='2', cache_size=100e6, limit=10000, workers=1, points=None, quadrature=None, full_output=False): r"""Adaptive integration of a vector-valued function. Parameters ---------- f : callable Vector-valued function f(x) to integrate. a : float Initial point. b : float Final point. epsabs : float, optional Absolute tolerance. epsrel : float, optional Relative tolerance. norm : {'max', '2'}, optional Vector norm to use for error estimation. cache_size : int, optional Number of bytes to use for memoization. workers : int or map-like callable, optional If `workers` is an integer, part of the computation is done in parallel subdivided to this many tasks (using :class:`python:multiprocessing.pool.Pool`). Supply `-1` to use all cores available to the Process. Alternatively, supply a map-like callable, such as :meth:`python:multiprocessing.pool.Pool.map` for evaluating the population in parallel. This evaluation is carried out as ``workers(func, iterable)``. points : list, optional List of additional breakpoints. quadrature : {'gk21', 'gk15', 'trapezoid'}, optional Quadrature rule to use on subintervals. Options: 'gk21' (Gauss-Kronrod 21-point rule), 'gk15' (Gauss-Kronrod 15-point rule), 'trapezoid' (composite trapezoid rule). Default: 'gk21' for finite intervals and 'gk15' for (semi-)infinite full_output : bool, optional Return an additional ``info`` dictionary. Returns ------- res : {float, array-like} Estimate for the result err : float Error estimate for the result in the given norm info : dict Returned only when ``full_output=True``. Info dictionary. Is an object with the attributes: success : bool Whether integration reached target precision. status : int Indicator for convergence, success (0), failure (1), and failure due to rounding error (2). neval : int Number of function evaluations. intervals : ndarray, shape (num_intervals, 2) Start and end points of subdivision intervals. integrals : ndarray, shape (num_intervals, ...) Integral for each interval. Note that at most ``cache_size`` values are recorded, and the array may contains *nan* for missing items. errors : ndarray, shape (num_intervals,) Estimated integration error for each interval. Notes ----- The algorithm mainly follows the implementation of QUADPACK's DQAG* algorithms, implementing global error control and adaptive subdivision. The algorithm here has some differences to the QUADPACK approach: Instead of subdividing one interval at a time, the algorithm subdivides N intervals with largest errors at once. This enables (partial) parallelization of the integration. The logic of subdividing "next largest" intervals first is then not implemented, and we rely on the above extension to avoid concentrating on "small" intervals only. The Wynn epsilon table extrapolation is not used (QUADPACK uses it for infinite intervals). This is because the algorithm here is supposed to work on vector-valued functions, in an user-specified norm, and the extension of the epsilon algorithm to this case does not appear to be widely agreed. For max-norm, using elementwise Wynn epsilon could be possible, but we do not do this here with the hope that the epsilon extrapolation is mainly useful in special cases. References ---------- [1] R. Piessens, E. de Doncker, QUADPACK (1983). Examples -------- We can compute integrations of a vector-valued function: >>> from scipy.integrate import quad_vec >>> import matplotlib.pyplot as plt >>> alpha = np.linspace(0.0, 2.0, num=30) >>> f = lambda x: x**alpha >>> x0, x1 = 0, 2 >>> y, err = quad_vec(f, x0, x1) >>> plt.plot(alpha, y) >>> plt.xlabel(r"$\alpha$") >>> plt.ylabel(r"$\int_{0}^{2} x^\alpha dx$") >>> plt.show() """ a = float(a) b = float(b) # Use simple transformations to deal with integrals over infinite # intervals. kwargs = dict(epsabs=epsabs, epsrel=epsrel, norm=norm, cache_size=cache_size, limit=limit, workers=workers, points=points, quadrature='gk15' if quadrature is None else quadrature, full_output=full_output) if np.isfinite(a) and np.isinf(b): f2 = SemiInfiniteFunc(f, start=a, infty=b) if points is not None: kwargs['points'] = tuple(f2.get_t(xp) for xp in points) return quad_vec(f2, 0, 1, **kwargs) elif np.isfinite(b) and np.isinf(a): f2 = SemiInfiniteFunc(f, start=b, infty=a) if points is not None: kwargs['points'] = tuple(f2.get_t(xp) for xp in points) res = quad_vec(f2, 0, 1, **kwargs) return (-res[0],) + res[1:] elif np.isinf(a) and np.isinf(b): sgn = -1 if b < a else 1 # NB. explicitly split integral at t=0, which separates # the positive and negative sides f2 = DoubleInfiniteFunc(f) if points is not None: kwargs['points'] = (0,) + tuple(f2.get_t(xp) for xp in points) else: kwargs['points'] = (0,) if a != b: res = quad_vec(f2, -1, 1, **kwargs) else: res = quad_vec(f2, 1, 1, **kwargs) return (res[0]*sgn,) + res[1:] elif not (np.isfinite(a) and np.isfinite(b)): raise ValueError("invalid integration bounds a={}, b={}".format(a, b)) norm_funcs = { None: _max_norm, 'max': _max_norm, '2': np.linalg.norm } if callable(norm): norm_func = norm else: norm_func = norm_funcs[norm] parallel_count = 128 min_intervals = 2 try: _quadrature = {None: _quadrature_gk21, 'gk21': _quadrature_gk21, 'gk15': _quadrature_gk15, 'trapz': _quadrature_trapezoid, # alias for backcompat 'trapezoid': _quadrature_trapezoid}[quadrature] except KeyError as e: raise ValueError("unknown quadrature {!r}".format(quadrature)) from e # Initial interval set if points is None: initial_intervals = [(a, b)] else: prev = a initial_intervals = [] for p in sorted(points): p = float(p) if not (a < p < b) or p == prev: continue initial_intervals.append((prev, p)) prev = p initial_intervals.append((prev, b)) global_integral = None global_error = None rounding_error = None interval_cache = None intervals = [] neval = 0 for x1, x2 in initial_intervals: ig, err, rnd = _quadrature(x1, x2, f, norm_func) neval += _quadrature.num_eval if global_integral is None: if isinstance(ig, (float, complex)): # Specialize for scalars if norm_func in (_max_norm, np.linalg.norm): norm_func = abs global_integral = ig global_error = float(err) rounding_error = float(rnd) cache_count = cache_size // _get_sizeof(ig) interval_cache = LRUDict(cache_count) else: global_integral += ig global_error += err rounding_error += rnd interval_cache[(x1, x2)] = copy.copy(ig) intervals.append((-err, x1, x2)) heapq.heapify(intervals) CONVERGED = 0 NOT_CONVERGED = 1 ROUNDING_ERROR = 2 NOT_A_NUMBER = 3 status_msg = { CONVERGED: "Target precision reached.", NOT_CONVERGED: "Target precision not reached.", ROUNDING_ERROR: "Target precision could not be reached due to rounding error.", NOT_A_NUMBER: "Non-finite values encountered." } # Process intervals with MapWrapper(workers) as mapwrapper: ier = NOT_CONVERGED while intervals and len(intervals) < limit: # Select intervals with largest errors for subdivision tol = max(epsabs, epsrel*norm_func(global_integral)) to_process = [] err_sum = 0 for j in range(parallel_count): if not intervals: break if j > 0 and err_sum > global_error - tol/8: # avoid unnecessary parallel splitting break interval = heapq.heappop(intervals) neg_old_err, a, b = interval old_int = interval_cache.pop((a, b), None) to_process.append(((-neg_old_err, a, b, old_int), f, norm_func, _quadrature)) err_sum += -neg_old_err # Subdivide intervals for dint, derr, dround_err, subint, dneval in mapwrapper(_subdivide_interval, to_process): neval += dneval global_integral += dint global_error += derr rounding_error += dround_err for x in subint: x1, x2, ig, err = x interval_cache[(x1, x2)] = ig heapq.heappush(intervals, (-err, x1, x2)) # Termination check if len(intervals) >= min_intervals: tol = max(epsabs, epsrel*norm_func(global_integral)) if global_error < tol/8: ier = CONVERGED break if global_error < rounding_error: ier = ROUNDING_ERROR break if not (np.isfinite(global_error) and np.isfinite(rounding_error)): ier = NOT_A_NUMBER break res = global_integral err = global_error + rounding_error if full_output: res_arr = np.asarray(res) dummy = np.full(res_arr.shape, np.nan, dtype=res_arr.dtype) integrals = np.array([interval_cache.get((z[1], z[2]), dummy) for z in intervals], dtype=res_arr.dtype) errors = np.array([-z[0] for z in intervals]) intervals = np.array([[z[1], z[2]] for z in intervals]) info = _Bunch(neval=neval, success=(ier == CONVERGED), status=ier, message=status_msg[ier], intervals=intervals, integrals=integrals, errors=errors) return (res, err, info) else: return (res, err) def _subdivide_interval(args): interval, f, norm_func, _quadrature = args old_err, a, b, old_int = interval c = 0.5 * (a + b) # Left-hand side if getattr(_quadrature, 'cache_size', 0) > 0: f = functools.lru_cache(_quadrature.cache_size)(f) s1, err1, round1 = _quadrature(a, c, f, norm_func) dneval = _quadrature.num_eval s2, err2, round2 = _quadrature(c, b, f, norm_func) dneval += _quadrature.num_eval if old_int is None: old_int, _, _ = _quadrature(a, b, f, norm_func) dneval += _quadrature.num_eval if getattr(_quadrature, 'cache_size', 0) > 0: dneval = f.cache_info().misses dint = s1 + s2 - old_int derr = err1 + err2 - old_err dround_err = round1 + round2 subintervals = ((a, c, s1, err1), (c, b, s2, err2)) return dint, derr, dround_err, subintervals, dneval def _quadrature_trapezoid(x1, x2, f, norm_func): """ Composite trapezoid quadrature """ x3 = 0.5*(x1 + x2) f1 = f(x1) f2 = f(x2) f3 = f(x3) s2 = 0.25 * (x2 - x1) * (f1 + 2*f3 + f2) round_err = 0.25 * abs(x2 - x1) * (float(norm_func(f1)) + 2*float(norm_func(f3)) + float(norm_func(f2))) * 2e-16 s1 = 0.5 * (x2 - x1) * (f1 + f2) err = 1/3 * float(norm_func(s1 - s2)) return s2, err, round_err _quadrature_trapezoid.cache_size = 3 * 3 _quadrature_trapezoid.num_eval = 3 def _quadrature_gk(a, b, f, norm_func, x, w, v): """ Generic Gauss-Kronrod quadrature """ fv = [0.0]*len(x) c = 0.5 * (a + b) h = 0.5 * (b - a) # Gauss-Kronrod s_k = 0.0 s_k_abs = 0.0 for i in range(len(x)): ff = f(c + h*x[i]) fv[i] = ff vv = v[i] # \int f(x) s_k += vv * ff # \int |f(x)| s_k_abs += vv * abs(ff) # Gauss s_g = 0.0 for i in range(len(w)): s_g += w[i] * fv[2*i + 1] # Quadrature of abs-deviation from average s_k_dabs = 0.0 y0 = s_k / 2.0 for i in range(len(x)): # \int |f(x) - y0| s_k_dabs += v[i] * abs(fv[i] - y0) # Use similar error estimation as quadpack err = float(norm_func((s_k - s_g) * h)) dabs = float(norm_func(s_k_dabs * h)) if dabs != 0 and err != 0: err = dabs * min(1.0, (200 * err / dabs)**1.5) eps = sys.float_info.epsilon round_err = float(norm_func(50 * eps * h * s_k_abs)) if round_err > sys.float_info.min: err = max(err, round_err) return h * s_k, err, round_err def _quadrature_gk21(a, b, f, norm_func): """ Gauss-Kronrod 21 quadrature with error estimate """ # Gauss-Kronrod points x = (0.995657163025808080735527280689003, 0.973906528517171720077964012084452, 0.930157491355708226001207180059508, 0.865063366688984510732096688423493, 0.780817726586416897063717578345042, 0.679409568299024406234327365114874, 0.562757134668604683339000099272694, 0.433395394129247190799265943165784, 0.294392862701460198131126603103866, 0.148874338981631210884826001129720, 0, -0.148874338981631210884826001129720, -0.294392862701460198131126603103866, -0.433395394129247190799265943165784, -0.562757134668604683339000099272694, -0.679409568299024406234327365114874, -0.780817726586416897063717578345042, -0.865063366688984510732096688423493, -0.930157491355708226001207180059508, -0.973906528517171720077964012084452, -0.995657163025808080735527280689003) # 10-point weights w = (0.066671344308688137593568809893332, 0.149451349150580593145776339657697, 0.219086362515982043995534934228163, 0.269266719309996355091226921569469, 0.295524224714752870173892994651338, 0.295524224714752870173892994651338, 0.269266719309996355091226921569469, 0.219086362515982043995534934228163, 0.149451349150580593145776339657697, 0.066671344308688137593568809893332) # 21-point weights v = (0.011694638867371874278064396062192, 0.032558162307964727478818972459390, 0.054755896574351996031381300244580, 0.075039674810919952767043140916190, 0.093125454583697605535065465083366, 0.109387158802297641899210590325805, 0.123491976262065851077958109831074, 0.134709217311473325928054001771707, 0.142775938577060080797094273138717, 0.147739104901338491374841515972068, 0.149445554002916905664936468389821, 0.147739104901338491374841515972068, 0.142775938577060080797094273138717, 0.134709217311473325928054001771707, 0.123491976262065851077958109831074, 0.109387158802297641899210590325805, 0.093125454583697605535065465083366, 0.075039674810919952767043140916190, 0.054755896574351996031381300244580, 0.032558162307964727478818972459390, 0.011694638867371874278064396062192) return _quadrature_gk(a, b, f, norm_func, x, w, v) _quadrature_gk21.num_eval = 21 def _quadrature_gk15(a, b, f, norm_func): """ Gauss-Kronrod 15 quadrature with error estimate """ # Gauss-Kronrod points x = (0.991455371120812639206854697526329, 0.949107912342758524526189684047851, 0.864864423359769072789712788640926, 0.741531185599394439863864773280788, 0.586087235467691130294144838258730, 0.405845151377397166906606412076961, 0.207784955007898467600689403773245, 0.000000000000000000000000000000000, -0.207784955007898467600689403773245, -0.405845151377397166906606412076961, -0.586087235467691130294144838258730, -0.741531185599394439863864773280788, -0.864864423359769072789712788640926, -0.949107912342758524526189684047851, -0.991455371120812639206854697526329) # 7-point weights w = (0.129484966168869693270611432679082, 0.279705391489276667901467771423780, 0.381830050505118944950369775488975, 0.417959183673469387755102040816327, 0.381830050505118944950369775488975, 0.279705391489276667901467771423780, 0.129484966168869693270611432679082) # 15-point weights v = (0.022935322010529224963732008058970, 0.063092092629978553290700663189204, 0.104790010322250183839876322541518, 0.140653259715525918745189590510238, 0.169004726639267902826583426598550, 0.190350578064785409913256402421014, 0.204432940075298892414161999234649, 0.209482141084727828012999174891714, 0.204432940075298892414161999234649, 0.190350578064785409913256402421014, 0.169004726639267902826583426598550, 0.140653259715525918745189590510238, 0.104790010322250183839876322541518, 0.063092092629978553290700663189204, 0.022935322010529224963732008058970) return _quadrature_gk(a, b, f, norm_func, x, w, v) _quadrature_gk15.num_eval = 15