""" Unit tests for Krylov space trust-region subproblem solver. To run it in its simplest form:: nosetests test_optimize.py """ import numpy as np from scipy.optimize._trlib import (get_trlib_quadratic_subproblem) from numpy.testing import (assert_, assert_almost_equal, assert_equal, assert_array_almost_equal) KrylovQP = get_trlib_quadratic_subproblem(tol_rel_i=1e-8, tol_rel_b=1e-6) KrylovQP_disp = get_trlib_quadratic_subproblem(tol_rel_i=1e-8, tol_rel_b=1e-6, disp=True) class TestKrylovQuadraticSubproblem(object): def test_for_the_easy_case(self): # `H` is chosen such that `g` is not orthogonal to the # eigenvector associated with the smallest eigenvalue. H = np.array([[1.0, 0.0, 4.0], [0.0, 2.0, 0.0], [4.0, 0.0, 3.0]]) g = np.array([5.0, 0.0, 4.0]) # Trust Radius trust_radius = 1.0 # Solve Subproblem subprob = KrylovQP(x=0, fun=lambda x: 0, jac=lambda x: g, hess=lambda x: None, hessp=lambda x, y: H.dot(y)) p, hits_boundary = subprob.solve(trust_radius) assert_array_almost_equal(p, np.array([-1.0, 0.0, 0.0])) assert_equal(hits_boundary, True) # check kkt satisfaction assert_almost_equal( np.linalg.norm(H.dot(p) + subprob.lam * p + g), 0.0) # check trust region constraint assert_almost_equal(np.linalg.norm(p), trust_radius) trust_radius = 0.5 p, hits_boundary = subprob.solve(trust_radius) assert_array_almost_equal(p, np.array([-0.46125446, 0., -0.19298788])) assert_equal(hits_boundary, True) # check kkt satisfaction assert_almost_equal( np.linalg.norm(H.dot(p) + subprob.lam * p + g), 0.0) # check trust region constraint assert_almost_equal(np.linalg.norm(p), trust_radius) def test_for_the_hard_case(self): # `H` is chosen such that `g` is orthogonal to the # eigenvector associated with the smallest eigenvalue. H = np.array([[1.0, 0.0, 4.0], [0.0, 2.0, 0.0], [4.0, 0.0, 3.0]]) g = np.array([0.0, 2.0, 0.0]) # Trust Radius trust_radius = 1.0 # Solve Subproblem subprob = KrylovQP(x=0, fun=lambda x: 0, jac=lambda x: g, hess=lambda x: None, hessp=lambda x, y: H.dot(y)) p, hits_boundary = subprob.solve(trust_radius) assert_array_almost_equal(p, np.array([0.0, -1.0, 0.0])) # check kkt satisfaction assert_almost_equal( np.linalg.norm(H.dot(p) + subprob.lam * p + g), 0.0) # check trust region constraint assert_almost_equal(np.linalg.norm(p), trust_radius) trust_radius = 0.5 p, hits_boundary = subprob.solve(trust_radius) assert_array_almost_equal(p, np.array([0.0, -0.5, 0.0])) # check kkt satisfaction assert_almost_equal( np.linalg.norm(H.dot(p) + subprob.lam * p + g), 0.0) # check trust region constraint assert_almost_equal(np.linalg.norm(p), trust_radius) def test_for_interior_convergence(self): H = np.array([[1.812159, 0.82687265, 0.21838879, -0.52487006, 0.25436988], [0.82687265, 2.66380283, 0.31508988, -0.40144163, 0.08811588], [0.21838879, 0.31508988, 2.38020726, -0.3166346, 0.27363867], [-0.52487006, -0.40144163, -0.3166346, 1.61927182, -0.42140166], [0.25436988, 0.08811588, 0.27363867, -0.42140166, 1.33243101]]) g = np.array([0.75798952, 0.01421945, 0.33847612, 0.83725004, -0.47909534]) trust_radius = 1.1 # Solve Subproblem subprob = KrylovQP(x=0, fun=lambda x: 0, jac=lambda x: g, hess=lambda x: None, hessp=lambda x, y: H.dot(y)) p, hits_boundary = subprob.solve(trust_radius) # check kkt satisfaction assert_almost_equal( np.linalg.norm(H.dot(p) + subprob.lam * p + g), 0.0) assert_array_almost_equal(p, [-0.68585435, 0.1222621, -0.22090999, -0.67005053, 0.31586769]) assert_array_almost_equal(hits_boundary, False) def test_for_very_close_to_zero(self): H = np.array([[0.88547534, 2.90692271, 0.98440885, -0.78911503, -0.28035809], [2.90692271, -0.04618819, 0.32867263, -0.83737945, 0.17116396], [0.98440885, 0.32867263, -0.87355957, -0.06521957, -1.43030957], [-0.78911503, -0.83737945, -0.06521957, -1.645709, -0.33887298], [-0.28035809, 0.17116396, -1.43030957, -0.33887298, -1.68586978]]) g = np.array([0, 0, 0, 0, 1e-6]) trust_radius = 1.1 # Solve Subproblem subprob = KrylovQP(x=0, fun=lambda x: 0, jac=lambda x: g, hess=lambda x: None, hessp=lambda x, y: H.dot(y)) p, hits_boundary = subprob.solve(trust_radius) # check kkt satisfaction assert_almost_equal( np.linalg.norm(H.dot(p) + subprob.lam * p + g), 0.0) # check trust region constraint assert_almost_equal(np.linalg.norm(p), trust_radius) assert_array_almost_equal(p, [0.06910534, -0.01432721, -0.65311947, -0.23815972, -0.84954934]) assert_array_almost_equal(hits_boundary, True) def test_disp(self, capsys): H = -np.eye(5) g = np.array([0, 0, 0, 0, 1e-6]) trust_radius = 1.1 subprob = KrylovQP_disp(x=0, fun=lambda x: 0, jac=lambda x: g, hess=lambda x: None, hessp=lambda x, y: H.dot(y)) p, hits_boundary = subprob.solve(trust_radius) out, err = capsys.readouterr() assert_(out.startswith(' TR Solving trust region problem'), repr(out))