You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
817 lines
27 KiB
Python
817 lines
27 KiB
Python
4 years ago
|
"""Iterative methods for solving linear systems"""
|
||
|
|
||
|
__all__ = ['bicg','bicgstab','cg','cgs','gmres','qmr']
|
||
|
|
||
|
import warnings
|
||
|
import numpy as np
|
||
|
|
||
|
from . import _iterative
|
||
|
|
||
|
from scipy.sparse.linalg.interface import LinearOperator
|
||
|
from .utils import make_system
|
||
|
from scipy._lib._util import _aligned_zeros
|
||
|
from scipy._lib._threadsafety import non_reentrant
|
||
|
|
||
|
_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'}
|
||
|
|
||
|
|
||
|
# Part of the docstring common to all iterative solvers
|
||
|
common_doc1 = \
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
A : {sparse matrix, dense matrix, LinearOperator}"""
|
||
|
|
||
|
common_doc2 = \
|
||
|
"""b : {array, matrix}
|
||
|
Right hand side of the linear system. Has shape (N,) or (N,1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : {array, matrix}
|
||
|
The converged solution.
|
||
|
info : integer
|
||
|
Provides convergence information:
|
||
|
0 : successful exit
|
||
|
>0 : convergence to tolerance not achieved, number of iterations
|
||
|
<0 : illegal input or breakdown
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
x0 : {array, matrix}
|
||
|
Starting guess for the solution.
|
||
|
tol, atol : float, optional
|
||
|
Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
|
||
|
The default for ``atol`` is ``'legacy'``, which emulates
|
||
|
a different legacy behavior.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
The default value for `atol` will be changed in a future release.
|
||
|
For future compatibility, specify `atol` explicitly.
|
||
|
maxiter : integer
|
||
|
Maximum number of iterations. Iteration will stop after maxiter
|
||
|
steps even if the specified tolerance has not been achieved.
|
||
|
M : {sparse matrix, dense matrix, LinearOperator}
|
||
|
Preconditioner for A. The preconditioner should approximate the
|
||
|
inverse of A. Effective preconditioning dramatically improves the
|
||
|
rate of convergence, which implies that fewer iterations are needed
|
||
|
to reach a given error tolerance.
|
||
|
callback : function
|
||
|
User-supplied function to call after each iteration. It is called
|
||
|
as callback(xk), where xk is the current solution vector.
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def _stoptest(residual, atol):
|
||
|
"""
|
||
|
Successful termination condition for the solvers.
|
||
|
"""
|
||
|
resid = np.linalg.norm(residual)
|
||
|
if resid <= atol:
|
||
|
return resid, 1
|
||
|
else:
|
||
|
return resid, 0
|
||
|
|
||
|
|
||
|
def _get_atol(tol, atol, bnrm2, get_residual, routine_name):
|
||
|
"""
|
||
|
Parse arguments for absolute tolerance in termination condition.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
tol, atol : object
|
||
|
The arguments passed into the solver routine by user.
|
||
|
bnrm2 : float
|
||
|
2-norm of the rhs vector.
|
||
|
get_residual : callable
|
||
|
Callable ``get_residual()`` that returns the initial value of
|
||
|
the residual.
|
||
|
routine_name : str
|
||
|
Name of the routine.
|
||
|
"""
|
||
|
|
||
|
if atol is None:
|
||
|
warnings.warn("scipy.sparse.linalg.{name} called without specifying `atol`. "
|
||
|
"The default value will be changed in a future release. "
|
||
|
"For compatibility, specify a value for `atol` explicitly, e.g., "
|
||
|
"``{name}(..., atol=0)``, or to retain the old behavior "
|
||
|
"``{name}(..., atol='legacy')``".format(name=routine_name),
|
||
|
category=DeprecationWarning, stacklevel=4)
|
||
|
atol = 'legacy'
|
||
|
|
||
|
tol = float(tol)
|
||
|
|
||
|
if atol == 'legacy':
|
||
|
# emulate old legacy behavior
|
||
|
resid = get_residual()
|
||
|
if resid <= tol:
|
||
|
return 'exit'
|
||
|
if bnrm2 == 0:
|
||
|
return tol
|
||
|
else:
|
||
|
return tol * float(bnrm2)
|
||
|
else:
|
||
|
return max(float(atol), tol * float(bnrm2))
|
||
|
|
||
|
|
||
|
def set_docstring(header, Ainfo, footer='', atol_default='0'):
|
||
|
def combine(fn):
|
||
|
fn.__doc__ = '\n'.join((header, common_doc1,
|
||
|
' ' + Ainfo.replace('\n', '\n '),
|
||
|
common_doc2, footer))
|
||
|
return fn
|
||
|
return combine
|
||
|
|
||
|
|
||
|
@set_docstring('Use BIConjugate Gradient iteration to solve ``Ax = b``.',
|
||
|
'The real or complex N-by-N matrix of the linear system.\n'
|
||
|
'Alternatively, ``A`` can be a linear operator which can\n'
|
||
|
'produce ``Ax`` and ``A^T x`` using, e.g.,\n'
|
||
|
'``scipy.sparse.linalg.LinearOperator``.',
|
||
|
footer="""
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csc_matrix
|
||
|
>>> from scipy.sparse.linalg import bicg
|
||
|
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
|
||
|
>>> b = np.array([2, 4, -1], dtype=float)
|
||
|
>>> x, exitCode = bicg(A, b)
|
||
|
>>> print(exitCode) # 0 indicates successful convergence
|
||
|
0
|
||
|
>>> np.allclose(A.dot(x), b)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
)
|
||
|
@non_reentrant()
|
||
|
def bicg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
|
||
|
A,M,x,b,postprocess = make_system(A, M, x0, b)
|
||
|
|
||
|
n = len(b)
|
||
|
if maxiter is None:
|
||
|
maxiter = n*10
|
||
|
|
||
|
matvec, rmatvec = A.matvec, A.rmatvec
|
||
|
psolve, rpsolve = M.matvec, M.rmatvec
|
||
|
ltr = _type_conv[x.dtype.char]
|
||
|
revcom = getattr(_iterative, ltr + 'bicgrevcom')
|
||
|
|
||
|
get_residual = lambda: np.linalg.norm(matvec(x) - b)
|
||
|
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicg')
|
||
|
if atol == 'exit':
|
||
|
return postprocess(x), 0
|
||
|
|
||
|
resid = atol
|
||
|
ndx1 = 1
|
||
|
ndx2 = -1
|
||
|
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
|
||
|
work = _aligned_zeros(6*n,dtype=x.dtype)
|
||
|
ijob = 1
|
||
|
info = 0
|
||
|
ftflag = True
|
||
|
iter_ = maxiter
|
||
|
while True:
|
||
|
olditer = iter_
|
||
|
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
|
||
|
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
|
||
|
if callback is not None and iter_ > olditer:
|
||
|
callback(x)
|
||
|
slice1 = slice(ndx1-1, ndx1-1+n)
|
||
|
slice2 = slice(ndx2-1, ndx2-1+n)
|
||
|
if (ijob == -1):
|
||
|
if callback is not None:
|
||
|
callback(x)
|
||
|
break
|
||
|
elif (ijob == 1):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(work[slice1])
|
||
|
elif (ijob == 2):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*rmatvec(work[slice1])
|
||
|
elif (ijob == 3):
|
||
|
work[slice1] = psolve(work[slice2])
|
||
|
elif (ijob == 4):
|
||
|
work[slice1] = rpsolve(work[slice2])
|
||
|
elif (ijob == 5):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(x)
|
||
|
elif (ijob == 6):
|
||
|
if ftflag:
|
||
|
info = -1
|
||
|
ftflag = False
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
ijob = 2
|
||
|
|
||
|
if info > 0 and iter_ == maxiter and not (resid <= atol):
|
||
|
# info isn't set appropriately otherwise
|
||
|
info = iter_
|
||
|
|
||
|
return postprocess(x), info
|
||
|
|
||
|
|
||
|
@set_docstring('Use BIConjugate Gradient STABilized iteration to solve '
|
||
|
'``Ax = b``.',
|
||
|
'The real or complex N-by-N matrix of the linear system.\n'
|
||
|
'Alternatively, ``A`` can be a linear operator which can\n'
|
||
|
'produce ``Ax`` using, e.g.,\n'
|
||
|
'``scipy.sparse.linalg.LinearOperator``.')
|
||
|
@non_reentrant()
|
||
|
def bicgstab(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
|
||
|
A, M, x, b, postprocess = make_system(A, M, x0, b)
|
||
|
|
||
|
n = len(b)
|
||
|
if maxiter is None:
|
||
|
maxiter = n*10
|
||
|
|
||
|
matvec = A.matvec
|
||
|
psolve = M.matvec
|
||
|
ltr = _type_conv[x.dtype.char]
|
||
|
revcom = getattr(_iterative, ltr + 'bicgstabrevcom')
|
||
|
|
||
|
get_residual = lambda: np.linalg.norm(matvec(x) - b)
|
||
|
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'bicgstab')
|
||
|
if atol == 'exit':
|
||
|
return postprocess(x), 0
|
||
|
|
||
|
resid = atol
|
||
|
ndx1 = 1
|
||
|
ndx2 = -1
|
||
|
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
|
||
|
work = _aligned_zeros(7*n,dtype=x.dtype)
|
||
|
ijob = 1
|
||
|
info = 0
|
||
|
ftflag = True
|
||
|
iter_ = maxiter
|
||
|
while True:
|
||
|
olditer = iter_
|
||
|
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
|
||
|
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
|
||
|
if callback is not None and iter_ > olditer:
|
||
|
callback(x)
|
||
|
slice1 = slice(ndx1-1, ndx1-1+n)
|
||
|
slice2 = slice(ndx2-1, ndx2-1+n)
|
||
|
if (ijob == -1):
|
||
|
if callback is not None:
|
||
|
callback(x)
|
||
|
break
|
||
|
elif (ijob == 1):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(work[slice1])
|
||
|
elif (ijob == 2):
|
||
|
work[slice1] = psolve(work[slice2])
|
||
|
elif (ijob == 3):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(x)
|
||
|
elif (ijob == 4):
|
||
|
if ftflag:
|
||
|
info = -1
|
||
|
ftflag = False
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
ijob = 2
|
||
|
|
||
|
if info > 0 and iter_ == maxiter and not (resid <= atol):
|
||
|
# info isn't set appropriately otherwise
|
||
|
info = iter_
|
||
|
|
||
|
return postprocess(x), info
|
||
|
|
||
|
|
||
|
@set_docstring('Use Conjugate Gradient iteration to solve ``Ax = b``.',
|
||
|
'The real or complex N-by-N matrix of the linear system.\n'
|
||
|
'``A`` must represent a hermitian, positive definite matrix.\n'
|
||
|
'Alternatively, ``A`` can be a linear operator which can\n'
|
||
|
'produce ``Ax`` using, e.g.,\n'
|
||
|
'``scipy.sparse.linalg.LinearOperator``.')
|
||
|
@non_reentrant()
|
||
|
def cg(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
|
||
|
A, M, x, b, postprocess = make_system(A, M, x0, b)
|
||
|
|
||
|
n = len(b)
|
||
|
if maxiter is None:
|
||
|
maxiter = n*10
|
||
|
|
||
|
matvec = A.matvec
|
||
|
psolve = M.matvec
|
||
|
ltr = _type_conv[x.dtype.char]
|
||
|
revcom = getattr(_iterative, ltr + 'cgrevcom')
|
||
|
|
||
|
get_residual = lambda: np.linalg.norm(matvec(x) - b)
|
||
|
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cg')
|
||
|
if atol == 'exit':
|
||
|
return postprocess(x), 0
|
||
|
|
||
|
resid = atol
|
||
|
ndx1 = 1
|
||
|
ndx2 = -1
|
||
|
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
|
||
|
work = _aligned_zeros(4*n,dtype=x.dtype)
|
||
|
ijob = 1
|
||
|
info = 0
|
||
|
ftflag = True
|
||
|
iter_ = maxiter
|
||
|
while True:
|
||
|
olditer = iter_
|
||
|
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
|
||
|
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
|
||
|
if callback is not None and iter_ > olditer:
|
||
|
callback(x)
|
||
|
slice1 = slice(ndx1-1, ndx1-1+n)
|
||
|
slice2 = slice(ndx2-1, ndx2-1+n)
|
||
|
if (ijob == -1):
|
||
|
if callback is not None:
|
||
|
callback(x)
|
||
|
break
|
||
|
elif (ijob == 1):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(work[slice1])
|
||
|
elif (ijob == 2):
|
||
|
work[slice1] = psolve(work[slice2])
|
||
|
elif (ijob == 3):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(x)
|
||
|
elif (ijob == 4):
|
||
|
if ftflag:
|
||
|
info = -1
|
||
|
ftflag = False
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
if info == 1 and iter_ > 1:
|
||
|
# recompute residual and recheck, to avoid
|
||
|
# accumulating rounding error
|
||
|
work[slice1] = b - matvec(x)
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
ijob = 2
|
||
|
|
||
|
if info > 0 and iter_ == maxiter and not (resid <= atol):
|
||
|
# info isn't set appropriately otherwise
|
||
|
info = iter_
|
||
|
|
||
|
return postprocess(x), info
|
||
|
|
||
|
|
||
|
@set_docstring('Use Conjugate Gradient Squared iteration to solve ``Ax = b``.',
|
||
|
'The real-valued N-by-N matrix of the linear system.\n'
|
||
|
'Alternatively, ``A`` can be a linear operator which can\n'
|
||
|
'produce ``Ax`` using, e.g.,\n'
|
||
|
'``scipy.sparse.linalg.LinearOperator``.')
|
||
|
@non_reentrant()
|
||
|
def cgs(A, b, x0=None, tol=1e-5, maxiter=None, M=None, callback=None, atol=None):
|
||
|
A, M, x, b, postprocess = make_system(A, M, x0, b)
|
||
|
|
||
|
n = len(b)
|
||
|
if maxiter is None:
|
||
|
maxiter = n*10
|
||
|
|
||
|
matvec = A.matvec
|
||
|
psolve = M.matvec
|
||
|
ltr = _type_conv[x.dtype.char]
|
||
|
revcom = getattr(_iterative, ltr + 'cgsrevcom')
|
||
|
|
||
|
get_residual = lambda: np.linalg.norm(matvec(x) - b)
|
||
|
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'cgs')
|
||
|
if atol == 'exit':
|
||
|
return postprocess(x), 0
|
||
|
|
||
|
resid = atol
|
||
|
ndx1 = 1
|
||
|
ndx2 = -1
|
||
|
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
|
||
|
work = _aligned_zeros(7*n,dtype=x.dtype)
|
||
|
ijob = 1
|
||
|
info = 0
|
||
|
ftflag = True
|
||
|
iter_ = maxiter
|
||
|
while True:
|
||
|
olditer = iter_
|
||
|
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
|
||
|
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
|
||
|
if callback is not None and iter_ > olditer:
|
||
|
callback(x)
|
||
|
slice1 = slice(ndx1-1, ndx1-1+n)
|
||
|
slice2 = slice(ndx2-1, ndx2-1+n)
|
||
|
if (ijob == -1):
|
||
|
if callback is not None:
|
||
|
callback(x)
|
||
|
break
|
||
|
elif (ijob == 1):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(work[slice1])
|
||
|
elif (ijob == 2):
|
||
|
work[slice1] = psolve(work[slice2])
|
||
|
elif (ijob == 3):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(x)
|
||
|
elif (ijob == 4):
|
||
|
if ftflag:
|
||
|
info = -1
|
||
|
ftflag = False
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
if info == 1 and iter_ > 1:
|
||
|
# recompute residual and recheck, to avoid
|
||
|
# accumulating rounding error
|
||
|
work[slice1] = b - matvec(x)
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
ijob = 2
|
||
|
|
||
|
if info == -10:
|
||
|
# termination due to breakdown: check for convergence
|
||
|
resid, ok = _stoptest(b - matvec(x), atol)
|
||
|
if ok:
|
||
|
info = 0
|
||
|
|
||
|
if info > 0 and iter_ == maxiter and not (resid <= atol):
|
||
|
# info isn't set appropriately otherwise
|
||
|
info = iter_
|
||
|
|
||
|
return postprocess(x), info
|
||
|
|
||
|
|
||
|
@non_reentrant()
|
||
|
def gmres(A, b, x0=None, tol=1e-5, restart=None, maxiter=None, M=None, callback=None,
|
||
|
restrt=None, atol=None, callback_type=None):
|
||
|
"""
|
||
|
Use Generalized Minimal RESidual iteration to solve ``Ax = b``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : {sparse matrix, dense matrix, LinearOperator}
|
||
|
The real or complex N-by-N matrix of the linear system.
|
||
|
Alternatively, ``A`` can be a linear operator which can
|
||
|
produce ``Ax`` using, e.g.,
|
||
|
``scipy.sparse.linalg.LinearOperator``.
|
||
|
b : {array, matrix}
|
||
|
Right hand side of the linear system. Has shape (N,) or (N,1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : {array, matrix}
|
||
|
The converged solution.
|
||
|
info : int
|
||
|
Provides convergence information:
|
||
|
* 0 : successful exit
|
||
|
* >0 : convergence to tolerance not achieved, number of iterations
|
||
|
* <0 : illegal input or breakdown
|
||
|
|
||
|
Other parameters
|
||
|
----------------
|
||
|
x0 : {array, matrix}
|
||
|
Starting guess for the solution (a vector of zeros by default).
|
||
|
tol, atol : float, optional
|
||
|
Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
|
||
|
The default for ``atol`` is ``'legacy'``, which emulates
|
||
|
a different legacy behavior.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
The default value for `atol` will be changed in a future release.
|
||
|
For future compatibility, specify `atol` explicitly.
|
||
|
restart : int, optional
|
||
|
Number of iterations between restarts. Larger values increase
|
||
|
iteration cost, but may be necessary for convergence.
|
||
|
Default is 20.
|
||
|
maxiter : int, optional
|
||
|
Maximum number of iterations (restart cycles). Iteration will stop
|
||
|
after maxiter steps even if the specified tolerance has not been
|
||
|
achieved.
|
||
|
M : {sparse matrix, dense matrix, LinearOperator}
|
||
|
Inverse of the preconditioner of A. M should approximate the
|
||
|
inverse of A and be easy to solve for (see Notes). Effective
|
||
|
preconditioning dramatically improves the rate of convergence,
|
||
|
which implies that fewer iterations are needed to reach a given
|
||
|
error tolerance. By default, no preconditioner is used.
|
||
|
callback : function
|
||
|
User-supplied function to call after each iteration. It is called
|
||
|
as `callback(args)`, where `args` are selected by `callback_type`.
|
||
|
callback_type : {'x', 'pr_norm', 'legacy'}, optional
|
||
|
Callback function argument requested:
|
||
|
- ``x``: current iterate (ndarray), called on every restart
|
||
|
- ``pr_norm``: relative (preconditioned) residual norm (float),
|
||
|
called on every inner iteration
|
||
|
- ``legacy`` (default): same as ``pr_norm``, but also changes the
|
||
|
meaning of 'maxiter' to count inner iterations instead of restart
|
||
|
cycles.
|
||
|
restrt : int, optional
|
||
|
DEPRECATED - use `restart` instead.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
LinearOperator
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
A preconditioner, P, is chosen such that P is close to A but easy to solve
|
||
|
for. The preconditioner parameter required by this routine is
|
||
|
``M = P^-1``. The inverse should preferably not be calculated
|
||
|
explicitly. Rather, use the following template to produce M::
|
||
|
|
||
|
# Construct a linear operator that computes P^-1 * x.
|
||
|
import scipy.sparse.linalg as spla
|
||
|
M_x = lambda x: spla.spsolve(P, x)
|
||
|
M = spla.LinearOperator((n, n), M_x)
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csc_matrix
|
||
|
>>> from scipy.sparse.linalg import gmres
|
||
|
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
|
||
|
>>> b = np.array([2, 4, -1], dtype=float)
|
||
|
>>> x, exitCode = gmres(A, b)
|
||
|
>>> print(exitCode) # 0 indicates successful convergence
|
||
|
0
|
||
|
>>> np.allclose(A.dot(x), b)
|
||
|
True
|
||
|
"""
|
||
|
|
||
|
# Change 'restrt' keyword to 'restart'
|
||
|
if restrt is None:
|
||
|
restrt = restart
|
||
|
elif restart is not None:
|
||
|
raise ValueError("Cannot specify both restart and restrt keywords. "
|
||
|
"Preferably use 'restart' only.")
|
||
|
|
||
|
if callback is not None and callback_type is None:
|
||
|
# Warn about 'callback_type' semantic changes.
|
||
|
# Probably should be removed only in far future, Scipy 2.0 or so.
|
||
|
warnings.warn("scipy.sparse.linalg.gmres called without specifying `callback_type`. "
|
||
|
"The default value will be changed in a future release. "
|
||
|
"For compatibility, specify a value for `callback_type` explicitly, e.g., "
|
||
|
"``{name}(..., callback_type='pr_norm')``, or to retain the old behavior "
|
||
|
"``{name}(..., callback_type='legacy')``",
|
||
|
category=DeprecationWarning, stacklevel=3)
|
||
|
|
||
|
if callback_type is None:
|
||
|
callback_type = 'legacy'
|
||
|
|
||
|
if callback_type not in ('x', 'pr_norm', 'legacy'):
|
||
|
raise ValueError("Unknown callback_type: {!r}".format(callback_type))
|
||
|
|
||
|
if callback is None:
|
||
|
callback_type = 'none'
|
||
|
|
||
|
A, M, x, b,postprocess = make_system(A, M, x0, b)
|
||
|
|
||
|
n = len(b)
|
||
|
if maxiter is None:
|
||
|
maxiter = n*10
|
||
|
|
||
|
if restrt is None:
|
||
|
restrt = 20
|
||
|
restrt = min(restrt, n)
|
||
|
|
||
|
matvec = A.matvec
|
||
|
psolve = M.matvec
|
||
|
ltr = _type_conv[x.dtype.char]
|
||
|
revcom = getattr(_iterative, ltr + 'gmresrevcom')
|
||
|
|
||
|
bnrm2 = np.linalg.norm(b)
|
||
|
Mb_nrm2 = np.linalg.norm(psolve(b))
|
||
|
get_residual = lambda: np.linalg.norm(matvec(x) - b)
|
||
|
atol = _get_atol(tol, atol, bnrm2, get_residual, 'gmres')
|
||
|
if atol == 'exit':
|
||
|
return postprocess(x), 0
|
||
|
|
||
|
if bnrm2 == 0:
|
||
|
return postprocess(b), 0
|
||
|
|
||
|
# Tolerance passed to GMRESREVCOM applies to the inner iteration
|
||
|
# and deals with the left-preconditioned residual.
|
||
|
ptol_max_factor = 1.0
|
||
|
ptol = Mb_nrm2 * min(ptol_max_factor, atol / bnrm2)
|
||
|
resid = np.nan
|
||
|
presid = np.nan
|
||
|
ndx1 = 1
|
||
|
ndx2 = -1
|
||
|
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
|
||
|
work = _aligned_zeros((6+restrt)*n,dtype=x.dtype)
|
||
|
work2 = _aligned_zeros((restrt+1)*(2*restrt+2),dtype=x.dtype)
|
||
|
ijob = 1
|
||
|
info = 0
|
||
|
ftflag = True
|
||
|
iter_ = maxiter
|
||
|
old_ijob = ijob
|
||
|
first_pass = True
|
||
|
resid_ready = False
|
||
|
iter_num = 1
|
||
|
while True:
|
||
|
olditer = iter_
|
||
|
x, iter_, presid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
|
||
|
revcom(b, x, restrt, work, work2, iter_, presid, info, ndx1, ndx2, ijob, ptol)
|
||
|
if callback_type == 'x' and iter_ != olditer:
|
||
|
callback(x)
|
||
|
slice1 = slice(ndx1-1, ndx1-1+n)
|
||
|
slice2 = slice(ndx2-1, ndx2-1+n)
|
||
|
if (ijob == -1): # gmres success, update last residual
|
||
|
if callback_type in ('pr_norm', 'legacy'):
|
||
|
if resid_ready:
|
||
|
callback(presid / bnrm2)
|
||
|
elif callback_type == 'x':
|
||
|
callback(x)
|
||
|
break
|
||
|
elif (ijob == 1):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(x)
|
||
|
elif (ijob == 2):
|
||
|
work[slice1] = psolve(work[slice2])
|
||
|
if not first_pass and old_ijob == 3:
|
||
|
resid_ready = True
|
||
|
|
||
|
first_pass = False
|
||
|
elif (ijob == 3):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*matvec(work[slice1])
|
||
|
if resid_ready:
|
||
|
if callback_type in ('pr_norm', 'legacy'):
|
||
|
callback(presid / bnrm2)
|
||
|
resid_ready = False
|
||
|
iter_num = iter_num+1
|
||
|
|
||
|
elif (ijob == 4):
|
||
|
if ftflag:
|
||
|
info = -1
|
||
|
ftflag = False
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
|
||
|
# Inner loop tolerance control
|
||
|
if info or presid > ptol:
|
||
|
ptol_max_factor = min(1.0, 1.5 * ptol_max_factor)
|
||
|
else:
|
||
|
# Inner loop tolerance OK, but outer loop not.
|
||
|
ptol_max_factor = max(1e-16, 0.25 * ptol_max_factor)
|
||
|
|
||
|
if resid != 0:
|
||
|
ptol = presid * min(ptol_max_factor, atol / resid)
|
||
|
else:
|
||
|
ptol = presid * ptol_max_factor
|
||
|
|
||
|
old_ijob = ijob
|
||
|
ijob = 2
|
||
|
|
||
|
if callback_type == 'legacy':
|
||
|
# Legacy behavior
|
||
|
if iter_num > maxiter:
|
||
|
info = maxiter
|
||
|
break
|
||
|
|
||
|
if info >= 0 and not (resid <= atol):
|
||
|
# info isn't set appropriately otherwise
|
||
|
info = maxiter
|
||
|
|
||
|
return postprocess(x), info
|
||
|
|
||
|
|
||
|
@non_reentrant()
|
||
|
def qmr(A, b, x0=None, tol=1e-5, maxiter=None, M1=None, M2=None, callback=None,
|
||
|
atol=None):
|
||
|
"""Use Quasi-Minimal Residual iteration to solve ``Ax = b``.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : {sparse matrix, dense matrix, LinearOperator}
|
||
|
The real-valued N-by-N matrix of the linear system.
|
||
|
Alternatively, ``A`` can be a linear operator which can
|
||
|
produce ``Ax`` and ``A^T x`` using, e.g.,
|
||
|
``scipy.sparse.linalg.LinearOperator``.
|
||
|
b : {array, matrix}
|
||
|
Right hand side of the linear system. Has shape (N,) or (N,1).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : {array, matrix}
|
||
|
The converged solution.
|
||
|
info : integer
|
||
|
Provides convergence information:
|
||
|
0 : successful exit
|
||
|
>0 : convergence to tolerance not achieved, number of iterations
|
||
|
<0 : illegal input or breakdown
|
||
|
|
||
|
Other Parameters
|
||
|
----------------
|
||
|
x0 : {array, matrix}
|
||
|
Starting guess for the solution.
|
||
|
tol, atol : float, optional
|
||
|
Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.
|
||
|
The default for ``atol`` is ``'legacy'``, which emulates
|
||
|
a different legacy behavior.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
The default value for `atol` will be changed in a future release.
|
||
|
For future compatibility, specify `atol` explicitly.
|
||
|
maxiter : integer
|
||
|
Maximum number of iterations. Iteration will stop after maxiter
|
||
|
steps even if the specified tolerance has not been achieved.
|
||
|
M1 : {sparse matrix, dense matrix, LinearOperator}
|
||
|
Left preconditioner for A.
|
||
|
M2 : {sparse matrix, dense matrix, LinearOperator}
|
||
|
Right preconditioner for A. Used together with the left
|
||
|
preconditioner M1. The matrix M1*A*M2 should have better
|
||
|
conditioned than A alone.
|
||
|
callback : function
|
||
|
User-supplied function to call after each iteration. It is called
|
||
|
as callback(xk), where xk is the current solution vector.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
LinearOperator
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import csc_matrix
|
||
|
>>> from scipy.sparse.linalg import qmr
|
||
|
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
|
||
|
>>> b = np.array([2, 4, -1], dtype=float)
|
||
|
>>> x, exitCode = qmr(A, b)
|
||
|
>>> print(exitCode) # 0 indicates successful convergence
|
||
|
0
|
||
|
>>> np.allclose(A.dot(x), b)
|
||
|
True
|
||
|
"""
|
||
|
A_ = A
|
||
|
A, M, x, b, postprocess = make_system(A, None, x0, b)
|
||
|
|
||
|
if M1 is None and M2 is None:
|
||
|
if hasattr(A_,'psolve'):
|
||
|
def left_psolve(b):
|
||
|
return A_.psolve(b,'left')
|
||
|
|
||
|
def right_psolve(b):
|
||
|
return A_.psolve(b,'right')
|
||
|
|
||
|
def left_rpsolve(b):
|
||
|
return A_.rpsolve(b,'left')
|
||
|
|
||
|
def right_rpsolve(b):
|
||
|
return A_.rpsolve(b,'right')
|
||
|
M1 = LinearOperator(A.shape, matvec=left_psolve, rmatvec=left_rpsolve)
|
||
|
M2 = LinearOperator(A.shape, matvec=right_psolve, rmatvec=right_rpsolve)
|
||
|
else:
|
||
|
def id(b):
|
||
|
return b
|
||
|
M1 = LinearOperator(A.shape, matvec=id, rmatvec=id)
|
||
|
M2 = LinearOperator(A.shape, matvec=id, rmatvec=id)
|
||
|
|
||
|
n = len(b)
|
||
|
if maxiter is None:
|
||
|
maxiter = n*10
|
||
|
|
||
|
ltr = _type_conv[x.dtype.char]
|
||
|
revcom = getattr(_iterative, ltr + 'qmrrevcom')
|
||
|
|
||
|
get_residual = lambda: np.linalg.norm(A.matvec(x) - b)
|
||
|
atol = _get_atol(tol, atol, np.linalg.norm(b), get_residual, 'qmr')
|
||
|
if atol == 'exit':
|
||
|
return postprocess(x), 0
|
||
|
|
||
|
resid = atol
|
||
|
ndx1 = 1
|
||
|
ndx2 = -1
|
||
|
# Use _aligned_zeros to work around a f2py bug in Numpy 1.9.1
|
||
|
work = _aligned_zeros(11*n,x.dtype)
|
||
|
ijob = 1
|
||
|
info = 0
|
||
|
ftflag = True
|
||
|
iter_ = maxiter
|
||
|
while True:
|
||
|
olditer = iter_
|
||
|
x, iter_, resid, info, ndx1, ndx2, sclr1, sclr2, ijob = \
|
||
|
revcom(b, x, work, iter_, resid, info, ndx1, ndx2, ijob)
|
||
|
if callback is not None and iter_ > olditer:
|
||
|
callback(x)
|
||
|
slice1 = slice(ndx1-1, ndx1-1+n)
|
||
|
slice2 = slice(ndx2-1, ndx2-1+n)
|
||
|
if (ijob == -1):
|
||
|
if callback is not None:
|
||
|
callback(x)
|
||
|
break
|
||
|
elif (ijob == 1):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*A.matvec(work[slice1])
|
||
|
elif (ijob == 2):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*A.rmatvec(work[slice1])
|
||
|
elif (ijob == 3):
|
||
|
work[slice1] = M1.matvec(work[slice2])
|
||
|
elif (ijob == 4):
|
||
|
work[slice1] = M2.matvec(work[slice2])
|
||
|
elif (ijob == 5):
|
||
|
work[slice1] = M1.rmatvec(work[slice2])
|
||
|
elif (ijob == 6):
|
||
|
work[slice1] = M2.rmatvec(work[slice2])
|
||
|
elif (ijob == 7):
|
||
|
work[slice2] *= sclr2
|
||
|
work[slice2] += sclr1*A.matvec(x)
|
||
|
elif (ijob == 8):
|
||
|
if ftflag:
|
||
|
info = -1
|
||
|
ftflag = False
|
||
|
resid, info = _stoptest(work[slice1], atol)
|
||
|
ijob = 2
|
||
|
|
||
|
if info > 0 and iter_ == maxiter and not (resid <= atol):
|
||
|
# info isn't set appropriately otherwise
|
||
|
info = iter_
|
||
|
|
||
|
return postprocess(x), info
|