You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
878 lines
30 KiB
Python
878 lines
30 KiB
Python
"""
|
|
Implementations of standard library functions, because it's not possible to
|
|
understand them with Jedi.
|
|
|
|
To add a new implementation, create a function and add it to the
|
|
``_implemented`` dict at the bottom of this module.
|
|
|
|
Note that this module exists only to implement very specific functionality in
|
|
the standard library. The usual way to understand the standard library is the
|
|
compiled module that returns the types for C-builtins.
|
|
"""
|
|
import parso
|
|
import os
|
|
from inspect import Parameter
|
|
|
|
from jedi import debug
|
|
from jedi.inference.utils import safe_property
|
|
from jedi.inference.helpers import get_str_or_none
|
|
from jedi.inference.arguments import iterate_argument_clinic, ParamIssue, \
|
|
repack_with_argument_clinic, AbstractArguments, TreeArgumentsWrapper
|
|
from jedi.inference import analysis
|
|
from jedi.inference import compiled
|
|
from jedi.inference.value.instance import \
|
|
AnonymousMethodExecutionContext, MethodExecutionContext
|
|
from jedi.inference.base_value import ContextualizedNode, \
|
|
NO_VALUES, ValueSet, ValueWrapper, LazyValueWrapper
|
|
from jedi.inference.value import ClassValue, ModuleValue
|
|
from jedi.inference.value.klass import ClassMixin
|
|
from jedi.inference.value.function import FunctionMixin
|
|
from jedi.inference.value import iterable
|
|
from jedi.inference.lazy_value import LazyTreeValue, LazyKnownValue, \
|
|
LazyKnownValues
|
|
from jedi.inference.names import ValueName, BaseTreeParamName
|
|
from jedi.inference.filters import AttributeOverwrite, publish_method, \
|
|
ParserTreeFilter, DictFilter
|
|
from jedi.inference.signature import AbstractSignature, SignatureWrapper
|
|
|
|
|
|
# Copied from Python 3.6's stdlib.
|
|
_NAMEDTUPLE_CLASS_TEMPLATE = """\
|
|
_property = property
|
|
_tuple = tuple
|
|
from operator import itemgetter as _itemgetter
|
|
from collections import OrderedDict
|
|
|
|
class {typename}(tuple):
|
|
__slots__ = ()
|
|
|
|
_fields = {field_names!r}
|
|
|
|
def __new__(_cls, {arg_list}):
|
|
'Create new instance of {typename}({arg_list})'
|
|
return _tuple.__new__(_cls, ({arg_list}))
|
|
|
|
@classmethod
|
|
def _make(cls, iterable, new=tuple.__new__, len=len):
|
|
'Make a new {typename} object from a sequence or iterable'
|
|
result = new(cls, iterable)
|
|
if len(result) != {num_fields:d}:
|
|
raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
|
|
return result
|
|
|
|
def _replace(_self, **kwds):
|
|
'Return a new {typename} object replacing specified fields with new values'
|
|
result = _self._make(map(kwds.pop, {field_names!r}, _self))
|
|
if kwds:
|
|
raise ValueError('Got unexpected field names: %r' % list(kwds))
|
|
return result
|
|
|
|
def __repr__(self):
|
|
'Return a nicely formatted representation string'
|
|
return self.__class__.__name__ + '({repr_fmt})' % self
|
|
|
|
def _asdict(self):
|
|
'Return a new OrderedDict which maps field names to their values.'
|
|
return OrderedDict(zip(self._fields, self))
|
|
|
|
def __getnewargs__(self):
|
|
'Return self as a plain tuple. Used by copy and pickle.'
|
|
return tuple(self)
|
|
|
|
# These methods were added by Jedi.
|
|
# __new__ doesn't really work with Jedi. So adding this to nametuples seems
|
|
# like the easiest way.
|
|
def __init__(self, {arg_list}):
|
|
'A helper function for namedtuple.'
|
|
self.__iterable = ({arg_list})
|
|
|
|
def __iter__(self):
|
|
for i in self.__iterable:
|
|
yield i
|
|
|
|
def __getitem__(self, y):
|
|
return self.__iterable[y]
|
|
|
|
{field_defs}
|
|
"""
|
|
|
|
_NAMEDTUPLE_FIELD_TEMPLATE = '''\
|
|
{name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
|
|
'''
|
|
|
|
|
|
def execute(callback):
|
|
def wrapper(value, arguments):
|
|
def call():
|
|
return callback(value, arguments=arguments)
|
|
|
|
try:
|
|
obj_name = value.name.string_name
|
|
except AttributeError:
|
|
pass
|
|
else:
|
|
p = value.parent_context
|
|
if p is not None and p.is_builtins_module():
|
|
module_name = 'builtins'
|
|
elif p is not None and p.is_module():
|
|
module_name = p.py__name__()
|
|
else:
|
|
return call()
|
|
|
|
if value.is_bound_method() or value.is_instance():
|
|
# value can be an instance for example if it is a partial
|
|
# object.
|
|
return call()
|
|
|
|
# for now we just support builtin functions.
|
|
try:
|
|
func = _implemented[module_name][obj_name]
|
|
except KeyError:
|
|
pass
|
|
else:
|
|
return func(value, arguments=arguments, callback=call)
|
|
return call()
|
|
|
|
return wrapper
|
|
|
|
|
|
def _follow_param(inference_state, arguments, index):
|
|
try:
|
|
key, lazy_value = list(arguments.unpack())[index]
|
|
except IndexError:
|
|
return NO_VALUES
|
|
else:
|
|
return lazy_value.infer()
|
|
|
|
|
|
def argument_clinic(clinic_string, want_value=False, want_context=False,
|
|
want_arguments=False, want_inference_state=False,
|
|
want_callback=False):
|
|
"""
|
|
Works like Argument Clinic (PEP 436), to validate function params.
|
|
"""
|
|
|
|
def f(func):
|
|
def wrapper(value, arguments, callback):
|
|
try:
|
|
args = tuple(iterate_argument_clinic(
|
|
value.inference_state, arguments, clinic_string))
|
|
except ParamIssue:
|
|
return NO_VALUES
|
|
|
|
debug.dbg('builtin start %s' % value, color='MAGENTA')
|
|
kwargs = {}
|
|
if want_context:
|
|
kwargs['context'] = arguments.context
|
|
if want_value:
|
|
kwargs['value'] = value
|
|
if want_inference_state:
|
|
kwargs['inference_state'] = value.inference_state
|
|
if want_arguments:
|
|
kwargs['arguments'] = arguments
|
|
if want_callback:
|
|
kwargs['callback'] = callback
|
|
result = func(*args, **kwargs)
|
|
debug.dbg('builtin end: %s', result, color='MAGENTA')
|
|
return result
|
|
|
|
return wrapper
|
|
return f
|
|
|
|
|
|
@argument_clinic('iterator[, default], /', want_inference_state=True)
|
|
def builtins_next(iterators, defaults, inference_state):
|
|
# TODO theoretically we have to check here if something is an iterator.
|
|
# That is probably done by checking if it's not a class.
|
|
return defaults | iterators.py__getattribute__('__next__').execute_with_values()
|
|
|
|
|
|
@argument_clinic('iterator[, default], /')
|
|
def builtins_iter(iterators_or_callables, defaults):
|
|
# TODO implement this if it's a callable.
|
|
return iterators_or_callables.py__getattribute__('__iter__').execute_with_values()
|
|
|
|
|
|
@argument_clinic('object, name[, default], /')
|
|
def builtins_getattr(objects, names, defaults=None):
|
|
# follow the first param
|
|
for value in objects:
|
|
for name in names:
|
|
string = get_str_or_none(name)
|
|
if string is None:
|
|
debug.warning('getattr called without str')
|
|
continue
|
|
else:
|
|
return value.py__getattribute__(string)
|
|
return NO_VALUES
|
|
|
|
|
|
@argument_clinic('object[, bases, dict], /')
|
|
def builtins_type(objects, bases, dicts):
|
|
if bases or dicts:
|
|
# It's a type creation... maybe someday...
|
|
return NO_VALUES
|
|
else:
|
|
return objects.py__class__()
|
|
|
|
|
|
class SuperInstance(LazyValueWrapper):
|
|
"""To be used like the object ``super`` returns."""
|
|
def __init__(self, inference_state, instance):
|
|
self.inference_state = inference_state
|
|
self._instance = instance # Corresponds to super().__self__
|
|
|
|
def _get_bases(self):
|
|
return self._instance.py__class__().py__bases__()
|
|
|
|
def _get_wrapped_value(self):
|
|
objs = self._get_bases()[0].infer().execute_with_values()
|
|
if not objs:
|
|
# This is just a fallback and will only be used, if it's not
|
|
# possible to find a class
|
|
return self._instance
|
|
return next(iter(objs))
|
|
|
|
def get_filters(self, origin_scope=None):
|
|
for b in self._get_bases():
|
|
for value in b.infer().execute_with_values():
|
|
for f in value.get_filters():
|
|
yield f
|
|
|
|
|
|
@argument_clinic('[type[, value]], /', want_context=True)
|
|
def builtins_super(types, objects, context):
|
|
instance = None
|
|
if isinstance(context, AnonymousMethodExecutionContext):
|
|
instance = context.instance
|
|
elif isinstance(context, MethodExecutionContext):
|
|
instance = context.instance
|
|
if instance is None:
|
|
return NO_VALUES
|
|
return ValueSet({SuperInstance(instance.inference_state, instance)})
|
|
|
|
|
|
class ReversedObject(AttributeOverwrite):
|
|
def __init__(self, reversed_obj, iter_list):
|
|
super().__init__(reversed_obj)
|
|
self._iter_list = iter_list
|
|
|
|
def py__iter__(self, contextualized_node=None):
|
|
return self._iter_list
|
|
|
|
@publish_method('__next__')
|
|
def _next(self, arguments):
|
|
return ValueSet.from_sets(
|
|
lazy_value.infer() for lazy_value in self._iter_list
|
|
)
|
|
|
|
|
|
@argument_clinic('sequence, /', want_value=True, want_arguments=True)
|
|
def builtins_reversed(sequences, value, arguments):
|
|
# While we could do without this variable (just by using sequences), we
|
|
# want static analysis to work well. Therefore we need to generated the
|
|
# values again.
|
|
key, lazy_value = next(arguments.unpack())
|
|
cn = None
|
|
if isinstance(lazy_value, LazyTreeValue):
|
|
cn = ContextualizedNode(lazy_value.context, lazy_value.data)
|
|
ordered = list(sequences.iterate(cn))
|
|
|
|
# Repack iterator values and then run it the normal way. This is
|
|
# necessary, because `reversed` is a function and autocompletion
|
|
# would fail in certain cases like `reversed(x).__iter__` if we
|
|
# just returned the result directly.
|
|
seq, = value.inference_state.typing_module.py__getattribute__('Iterator').execute_with_values()
|
|
return ValueSet([ReversedObject(seq, list(reversed(ordered)))])
|
|
|
|
|
|
@argument_clinic('value, type, /', want_arguments=True, want_inference_state=True)
|
|
def builtins_isinstance(objects, types, arguments, inference_state):
|
|
bool_results = set()
|
|
for o in objects:
|
|
cls = o.py__class__()
|
|
try:
|
|
cls.py__bases__
|
|
except AttributeError:
|
|
# This is temporary. Everything should have a class attribute in
|
|
# Python?! Maybe we'll leave it here, because some numpy objects or
|
|
# whatever might not.
|
|
bool_results = set([True, False])
|
|
break
|
|
|
|
mro = list(cls.py__mro__())
|
|
|
|
for cls_or_tup in types:
|
|
if cls_or_tup.is_class():
|
|
bool_results.add(cls_or_tup in mro)
|
|
elif cls_or_tup.name.string_name == 'tuple' \
|
|
and cls_or_tup.get_root_context().is_builtins_module():
|
|
# Check for tuples.
|
|
classes = ValueSet.from_sets(
|
|
lazy_value.infer()
|
|
for lazy_value in cls_or_tup.iterate()
|
|
)
|
|
bool_results.add(any(cls in mro for cls in classes))
|
|
else:
|
|
_, lazy_value = list(arguments.unpack())[1]
|
|
if isinstance(lazy_value, LazyTreeValue):
|
|
node = lazy_value.data
|
|
message = 'TypeError: isinstance() arg 2 must be a ' \
|
|
'class, type, or tuple of classes and types, ' \
|
|
'not %s.' % cls_or_tup
|
|
analysis.add(lazy_value.context, 'type-error-isinstance', node, message)
|
|
|
|
return ValueSet(
|
|
compiled.builtin_from_name(inference_state, str(b))
|
|
for b in bool_results
|
|
)
|
|
|
|
|
|
class StaticMethodObject(ValueWrapper):
|
|
def py__get__(self, instance, class_value):
|
|
return ValueSet([self._wrapped_value])
|
|
|
|
|
|
@argument_clinic('sequence, /')
|
|
def builtins_staticmethod(functions):
|
|
return ValueSet(StaticMethodObject(f) for f in functions)
|
|
|
|
|
|
class ClassMethodObject(ValueWrapper):
|
|
def __init__(self, class_method_obj, function):
|
|
super().__init__(class_method_obj)
|
|
self._function = function
|
|
|
|
def py__get__(self, instance, class_value):
|
|
return ValueSet([
|
|
ClassMethodGet(__get__, class_value, self._function)
|
|
for __get__ in self._wrapped_value.py__getattribute__('__get__')
|
|
])
|
|
|
|
|
|
class ClassMethodGet(ValueWrapper):
|
|
def __init__(self, get_method, klass, function):
|
|
super().__init__(get_method)
|
|
self._class = klass
|
|
self._function = function
|
|
|
|
def get_signatures(self):
|
|
return [sig.bind(self._function) for sig in self._function.get_signatures()]
|
|
|
|
def py__call__(self, arguments):
|
|
return self._function.execute(ClassMethodArguments(self._class, arguments))
|
|
|
|
|
|
class ClassMethodArguments(TreeArgumentsWrapper):
|
|
def __init__(self, klass, arguments):
|
|
super().__init__(arguments)
|
|
self._class = klass
|
|
|
|
def unpack(self, func=None):
|
|
yield None, LazyKnownValue(self._class)
|
|
for values in self._wrapped_arguments.unpack(func):
|
|
yield values
|
|
|
|
|
|
@argument_clinic('sequence, /', want_value=True, want_arguments=True)
|
|
def builtins_classmethod(functions, value, arguments):
|
|
return ValueSet(
|
|
ClassMethodObject(class_method_object, function)
|
|
for class_method_object in value.py__call__(arguments=arguments)
|
|
for function in functions
|
|
)
|
|
|
|
|
|
class PropertyObject(AttributeOverwrite, ValueWrapper):
|
|
api_type = 'property'
|
|
|
|
def __init__(self, property_obj, function):
|
|
super().__init__(property_obj)
|
|
self._function = function
|
|
|
|
def py__get__(self, instance, class_value):
|
|
if instance is None:
|
|
return ValueSet([self])
|
|
return self._function.execute_with_values(instance)
|
|
|
|
@publish_method('deleter')
|
|
@publish_method('getter')
|
|
@publish_method('setter')
|
|
def _return_self(self, arguments):
|
|
return ValueSet({self})
|
|
|
|
|
|
@argument_clinic('func, /', want_callback=True)
|
|
def builtins_property(functions, callback):
|
|
return ValueSet(
|
|
PropertyObject(property_value, function)
|
|
for property_value in callback()
|
|
for function in functions
|
|
)
|
|
|
|
|
|
def collections_namedtuple(value, arguments, callback):
|
|
"""
|
|
Implementation of the namedtuple function.
|
|
|
|
This has to be done by processing the namedtuple class template and
|
|
inferring the result.
|
|
|
|
"""
|
|
inference_state = value.inference_state
|
|
|
|
# Process arguments
|
|
name = 'jedi_unknown_namedtuple'
|
|
for c in _follow_param(inference_state, arguments, 0):
|
|
x = get_str_or_none(c)
|
|
if x is not None:
|
|
name = x
|
|
break
|
|
|
|
# TODO here we only use one of the types, we should use all.
|
|
param_values = _follow_param(inference_state, arguments, 1)
|
|
if not param_values:
|
|
return NO_VALUES
|
|
_fields = list(param_values)[0]
|
|
string = get_str_or_none(_fields)
|
|
if string is not None:
|
|
fields = string.replace(',', ' ').split()
|
|
elif isinstance(_fields, iterable.Sequence):
|
|
fields = [
|
|
get_str_or_none(v)
|
|
for lazy_value in _fields.py__iter__()
|
|
for v in lazy_value.infer()
|
|
]
|
|
fields = [f for f in fields if f is not None]
|
|
else:
|
|
return NO_VALUES
|
|
|
|
# Build source code
|
|
code = _NAMEDTUPLE_CLASS_TEMPLATE.format(
|
|
typename=name,
|
|
field_names=tuple(fields),
|
|
num_fields=len(fields),
|
|
arg_list=repr(tuple(fields)).replace("'", "")[1:-1],
|
|
repr_fmt='',
|
|
field_defs='\n'.join(_NAMEDTUPLE_FIELD_TEMPLATE.format(index=index, name=name)
|
|
for index, name in enumerate(fields))
|
|
)
|
|
|
|
# Parse source code
|
|
module = inference_state.grammar.parse(code)
|
|
generated_class = next(module.iter_classdefs())
|
|
parent_context = ModuleValue(
|
|
inference_state, module,
|
|
code_lines=parso.split_lines(code, keepends=True),
|
|
).as_context()
|
|
|
|
return ValueSet([ClassValue(inference_state, parent_context, generated_class)])
|
|
|
|
|
|
class PartialObject(ValueWrapper):
|
|
def __init__(self, actual_value, arguments, instance=None):
|
|
super().__init__(actual_value)
|
|
self._arguments = arguments
|
|
self._instance = instance
|
|
|
|
def _get_functions(self, unpacked_arguments):
|
|
key, lazy_value = next(unpacked_arguments, (None, None))
|
|
if key is not None or lazy_value is None:
|
|
debug.warning("Partial should have a proper function %s", self._arguments)
|
|
return None
|
|
return lazy_value.infer()
|
|
|
|
def get_signatures(self):
|
|
unpacked_arguments = self._arguments.unpack()
|
|
funcs = self._get_functions(unpacked_arguments)
|
|
if funcs is None:
|
|
return []
|
|
|
|
arg_count = 0
|
|
if self._instance is not None:
|
|
arg_count = 1
|
|
keys = set()
|
|
for key, _ in unpacked_arguments:
|
|
if key is None:
|
|
arg_count += 1
|
|
else:
|
|
keys.add(key)
|
|
return [PartialSignature(s, arg_count, keys) for s in funcs.get_signatures()]
|
|
|
|
def py__call__(self, arguments):
|
|
funcs = self._get_functions(self._arguments.unpack())
|
|
if funcs is None:
|
|
return NO_VALUES
|
|
|
|
return funcs.execute(
|
|
MergedPartialArguments(self._arguments, arguments, self._instance)
|
|
)
|
|
|
|
def py__doc__(self):
|
|
"""
|
|
In CPython partial does not replace the docstring. However we are still
|
|
imitating it here, because we want this docstring to be worth something
|
|
for the user.
|
|
"""
|
|
callables = self._get_functions(self._arguments.unpack())
|
|
if callables is None:
|
|
return ''
|
|
for callable_ in callables:
|
|
return callable_.py__doc__()
|
|
return ''
|
|
|
|
def py__get__(self, instance, class_value):
|
|
return ValueSet([self])
|
|
|
|
|
|
class PartialMethodObject(PartialObject):
|
|
def py__get__(self, instance, class_value):
|
|
if instance is None:
|
|
return ValueSet([self])
|
|
return ValueSet([PartialObject(self._wrapped_value, self._arguments, instance)])
|
|
|
|
|
|
class PartialSignature(SignatureWrapper):
|
|
def __init__(self, wrapped_signature, skipped_arg_count, skipped_arg_set):
|
|
super().__init__(wrapped_signature)
|
|
self._skipped_arg_count = skipped_arg_count
|
|
self._skipped_arg_set = skipped_arg_set
|
|
|
|
def get_param_names(self, resolve_stars=False):
|
|
names = self._wrapped_signature.get_param_names()[self._skipped_arg_count:]
|
|
return [n for n in names if n.string_name not in self._skipped_arg_set]
|
|
|
|
|
|
class MergedPartialArguments(AbstractArguments):
|
|
def __init__(self, partial_arguments, call_arguments, instance=None):
|
|
self._partial_arguments = partial_arguments
|
|
self._call_arguments = call_arguments
|
|
self._instance = instance
|
|
|
|
def unpack(self, funcdef=None):
|
|
unpacked = self._partial_arguments.unpack(funcdef)
|
|
# Ignore this one, it's the function. It was checked before that it's
|
|
# there.
|
|
next(unpacked, None)
|
|
if self._instance is not None:
|
|
yield None, LazyKnownValue(self._instance)
|
|
for key_lazy_value in unpacked:
|
|
yield key_lazy_value
|
|
for key_lazy_value in self._call_arguments.unpack(funcdef):
|
|
yield key_lazy_value
|
|
|
|
|
|
def functools_partial(value, arguments, callback):
|
|
return ValueSet(
|
|
PartialObject(instance, arguments)
|
|
for instance in value.py__call__(arguments)
|
|
)
|
|
|
|
|
|
def functools_partialmethod(value, arguments, callback):
|
|
return ValueSet(
|
|
PartialMethodObject(instance, arguments)
|
|
for instance in value.py__call__(arguments)
|
|
)
|
|
|
|
|
|
@argument_clinic('first, /')
|
|
def _return_first_param(firsts):
|
|
return firsts
|
|
|
|
|
|
@argument_clinic('seq')
|
|
def _random_choice(sequences):
|
|
return ValueSet.from_sets(
|
|
lazy_value.infer()
|
|
for sequence in sequences
|
|
for lazy_value in sequence.py__iter__()
|
|
)
|
|
|
|
|
|
def _dataclass(value, arguments, callback):
|
|
for c in _follow_param(value.inference_state, arguments, 0):
|
|
if c.is_class():
|
|
return ValueSet([DataclassWrapper(c)])
|
|
else:
|
|
return ValueSet([value])
|
|
return NO_VALUES
|
|
|
|
|
|
class DataclassWrapper(ValueWrapper, ClassMixin):
|
|
def get_signatures(self):
|
|
param_names = []
|
|
for cls in reversed(list(self.py__mro__())):
|
|
if isinstance(cls, DataclassWrapper):
|
|
filter_ = cls.as_context().get_global_filter()
|
|
# .values ordering is not guaranteed, at least not in
|
|
# Python < 3.6, when dicts where not ordered, which is an
|
|
# implementation detail anyway.
|
|
for name in sorted(filter_.values(), key=lambda name: name.start_pos):
|
|
d = name.tree_name.get_definition()
|
|
annassign = d.children[1]
|
|
if d.type == 'expr_stmt' and annassign.type == 'annassign':
|
|
if len(annassign.children) < 4:
|
|
default = None
|
|
else:
|
|
default = annassign.children[3]
|
|
param_names.append(DataclassParamName(
|
|
parent_context=cls.parent_context,
|
|
tree_name=name.tree_name,
|
|
annotation_node=annassign.children[1],
|
|
default_node=default,
|
|
))
|
|
return [DataclassSignature(cls, param_names)]
|
|
|
|
|
|
class DataclassSignature(AbstractSignature):
|
|
def __init__(self, value, param_names):
|
|
super().__init__(value)
|
|
self._param_names = param_names
|
|
|
|
def get_param_names(self, resolve_stars=False):
|
|
return self._param_names
|
|
|
|
|
|
class DataclassParamName(BaseTreeParamName):
|
|
def __init__(self, parent_context, tree_name, annotation_node, default_node):
|
|
super().__init__(parent_context, tree_name)
|
|
self.annotation_node = annotation_node
|
|
self.default_node = default_node
|
|
|
|
def get_kind(self):
|
|
return Parameter.POSITIONAL_OR_KEYWORD
|
|
|
|
def infer(self):
|
|
if self.annotation_node is None:
|
|
return NO_VALUES
|
|
else:
|
|
return self.parent_context.infer_node(self.annotation_node)
|
|
|
|
|
|
class ItemGetterCallable(ValueWrapper):
|
|
def __init__(self, instance, args_value_set):
|
|
super().__init__(instance)
|
|
self._args_value_set = args_value_set
|
|
|
|
@repack_with_argument_clinic('item, /')
|
|
def py__call__(self, item_value_set):
|
|
value_set = NO_VALUES
|
|
for args_value in self._args_value_set:
|
|
lazy_values = list(args_value.py__iter__())
|
|
if len(lazy_values) == 1:
|
|
# TODO we need to add the contextualized value.
|
|
value_set |= item_value_set.get_item(lazy_values[0].infer(), None)
|
|
else:
|
|
value_set |= ValueSet([iterable.FakeList(
|
|
self._wrapped_value.inference_state,
|
|
[
|
|
LazyKnownValues(item_value_set.get_item(lazy_value.infer(), None))
|
|
for lazy_value in lazy_values
|
|
],
|
|
)])
|
|
return value_set
|
|
|
|
|
|
@argument_clinic('func, /')
|
|
def _functools_wraps(funcs):
|
|
return ValueSet(WrapsCallable(func) for func in funcs)
|
|
|
|
|
|
class WrapsCallable(ValueWrapper):
|
|
# XXX this is not the correct wrapped value, it should be a weird
|
|
# partials object, but it doesn't matter, because it's always used as a
|
|
# decorator anyway.
|
|
@repack_with_argument_clinic('func, /')
|
|
def py__call__(self, funcs):
|
|
return ValueSet({Wrapped(func, self._wrapped_value) for func in funcs})
|
|
|
|
|
|
class Wrapped(ValueWrapper, FunctionMixin):
|
|
def __init__(self, func, original_function):
|
|
super().__init__(func)
|
|
self._original_function = original_function
|
|
|
|
@property
|
|
def name(self):
|
|
return self._original_function.name
|
|
|
|
def get_signature_functions(self):
|
|
return [self]
|
|
|
|
|
|
@argument_clinic('*args, /', want_value=True, want_arguments=True)
|
|
def _operator_itemgetter(args_value_set, value, arguments):
|
|
return ValueSet([
|
|
ItemGetterCallable(instance, args_value_set)
|
|
for instance in value.py__call__(arguments)
|
|
])
|
|
|
|
|
|
def _create_string_input_function(func):
|
|
@argument_clinic('string, /', want_value=True, want_arguments=True)
|
|
def wrapper(strings, value, arguments):
|
|
def iterate():
|
|
for value in strings:
|
|
s = get_str_or_none(value)
|
|
if s is not None:
|
|
s = func(s)
|
|
yield compiled.create_simple_object(value.inference_state, s)
|
|
values = ValueSet(iterate())
|
|
if values:
|
|
return values
|
|
return value.py__call__(arguments)
|
|
return wrapper
|
|
|
|
|
|
@argument_clinic('*args, /', want_callback=True)
|
|
def _os_path_join(args_set, callback):
|
|
if len(args_set) == 1:
|
|
string = ''
|
|
sequence, = args_set
|
|
is_first = True
|
|
for lazy_value in sequence.py__iter__():
|
|
string_values = lazy_value.infer()
|
|
if len(string_values) != 1:
|
|
break
|
|
s = get_str_or_none(next(iter(string_values)))
|
|
if s is None:
|
|
break
|
|
if not is_first:
|
|
string += os.path.sep
|
|
string += s
|
|
is_first = False
|
|
else:
|
|
return ValueSet([compiled.create_simple_object(sequence.inference_state, string)])
|
|
return callback()
|
|
|
|
|
|
_implemented = {
|
|
'builtins': {
|
|
'getattr': builtins_getattr,
|
|
'type': builtins_type,
|
|
'super': builtins_super,
|
|
'reversed': builtins_reversed,
|
|
'isinstance': builtins_isinstance,
|
|
'next': builtins_next,
|
|
'iter': builtins_iter,
|
|
'staticmethod': builtins_staticmethod,
|
|
'classmethod': builtins_classmethod,
|
|
'property': builtins_property,
|
|
},
|
|
'copy': {
|
|
'copy': _return_first_param,
|
|
'deepcopy': _return_first_param,
|
|
},
|
|
'json': {
|
|
'load': lambda value, arguments, callback: NO_VALUES,
|
|
'loads': lambda value, arguments, callback: NO_VALUES,
|
|
},
|
|
'collections': {
|
|
'namedtuple': collections_namedtuple,
|
|
},
|
|
'functools': {
|
|
'partial': functools_partial,
|
|
'partialmethod': functools_partialmethod,
|
|
'wraps': _functools_wraps,
|
|
},
|
|
'_weakref': {
|
|
'proxy': _return_first_param,
|
|
},
|
|
'random': {
|
|
'choice': _random_choice,
|
|
},
|
|
'operator': {
|
|
'itemgetter': _operator_itemgetter,
|
|
},
|
|
'abc': {
|
|
# Not sure if this is necessary, but it's used a lot in typeshed and
|
|
# it's for now easier to just pass the function.
|
|
'abstractmethod': _return_first_param,
|
|
},
|
|
'typing': {
|
|
# The _alias function just leads to some annoying type inference.
|
|
# Therefore, just make it return nothing, which leads to the stubs
|
|
# being used instead. This only matters for 3.7+.
|
|
'_alias': lambda value, arguments, callback: NO_VALUES,
|
|
# runtime_checkable doesn't really change anything and is just
|
|
# adding logs for infering stuff, so we can safely ignore it.
|
|
'runtime_checkable': lambda value, arguments, callback: NO_VALUES,
|
|
},
|
|
'dataclasses': {
|
|
# For now this works at least better than Jedi trying to understand it.
|
|
'dataclass': _dataclass
|
|
},
|
|
# attrs exposes declaration interface roughly compatible with dataclasses
|
|
# via attrs.define, attrs.frozen and attrs.mutable
|
|
# https://www.attrs.org/en/stable/names.html
|
|
'attr': {
|
|
'define': _dataclass,
|
|
},
|
|
'attrs': {
|
|
'define': _dataclass,
|
|
},
|
|
'os.path': {
|
|
'dirname': _create_string_input_function(os.path.dirname),
|
|
'abspath': _create_string_input_function(os.path.abspath),
|
|
'relpath': _create_string_input_function(os.path.relpath),
|
|
'join': _os_path_join,
|
|
}
|
|
}
|
|
|
|
|
|
def get_metaclass_filters(func):
|
|
def wrapper(cls, metaclasses, is_instance):
|
|
for metaclass in metaclasses:
|
|
if metaclass.py__name__() == 'EnumMeta' \
|
|
and metaclass.get_root_context().py__name__() == 'enum':
|
|
filter_ = ParserTreeFilter(parent_context=cls.as_context())
|
|
return [DictFilter({
|
|
name.string_name: EnumInstance(cls, name).name
|
|
for name in filter_.values()
|
|
})]
|
|
return func(cls, metaclasses, is_instance)
|
|
return wrapper
|
|
|
|
|
|
class EnumInstance(LazyValueWrapper):
|
|
def __init__(self, cls, name):
|
|
self.inference_state = cls.inference_state
|
|
self._cls = cls # Corresponds to super().__self__
|
|
self._name = name
|
|
self.tree_node = self._name.tree_name
|
|
|
|
@safe_property
|
|
def name(self):
|
|
return ValueName(self, self._name.tree_name)
|
|
|
|
def _get_wrapped_value(self):
|
|
n = self._name.string_name
|
|
if n.startswith('__') and n.endswith('__') or self._name.api_type == 'function':
|
|
inferred = self._name.infer()
|
|
if inferred:
|
|
return next(iter(inferred))
|
|
o, = self.inference_state.builtins_module.py__getattribute__('object')
|
|
return o
|
|
|
|
value, = self._cls.execute_with_values()
|
|
return value
|
|
|
|
def get_filters(self, origin_scope=None):
|
|
yield DictFilter(dict(
|
|
name=compiled.create_simple_object(self.inference_state, self._name.string_name).name,
|
|
value=self._name,
|
|
))
|
|
for f in self._get_wrapped_value().get_filters():
|
|
yield f
|
|
|
|
|
|
def tree_name_to_values(func):
|
|
def wrapper(inference_state, context, tree_name):
|
|
if tree_name.value == 'sep' and context.is_module() and context.py__name__() == 'os.path':
|
|
return ValueSet({
|
|
compiled.create_simple_object(inference_state, os.path.sep),
|
|
})
|
|
return func(inference_state, context, tree_name)
|
|
return wrapper
|