Metadata-Version: 2.1 Name: pure-eval Version: 0.2.2 Summary: Safely evaluate AST nodes without side effects Home-page: http://github.com/alexmojaki/pure_eval Author: Alex Hall Author-email: alex.mojaki@gmail.com License: MIT Platform: UNKNOWN Classifier: Intended Audience :: Developers Classifier: Programming Language :: Python :: 3.5 Classifier: Programming Language :: Python :: 3.6 Classifier: Programming Language :: Python :: 3.7 Classifier: Programming Language :: Python :: 3.8 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Classifier: License :: OSI Approved :: MIT License Classifier: Operating System :: OS Independent Description-Content-Type: text/markdown License-File: LICENSE.txt Provides-Extra: tests Requires-Dist: pytest ; extra == 'tests' # `pure_eval` [![Build Status](https://travis-ci.org/alexmojaki/pure_eval.svg?branch=master)](https://travis-ci.org/alexmojaki/pure_eval) [![Coverage Status](https://coveralls.io/repos/github/alexmojaki/pure_eval/badge.svg?branch=master)](https://coveralls.io/github/alexmojaki/pure_eval?branch=master) [![Supports Python versions 3.5+](https://img.shields.io/pypi/pyversions/pure_eval.svg)](https://pypi.python.org/pypi/pure_eval) This is a Python package that lets you safely evaluate certain AST nodes without triggering arbitrary code that may have unwanted side effects. It can be installed from PyPI: pip install pure_eval To demonstrate usage, suppose we have an object defined as follows: ```python class Rectangle: def __init__(self, width, height): self.width = width self.height = height @property def area(self): print("Calculating area...") return self.width * self.height rect = Rectangle(3, 5) ``` Given the `rect` object, we want to evaluate whatever expressions we can in this source code: ```python source = "(rect.width, rect.height, rect.area)" ``` This library works with the AST, so let's parse the source code and peek inside: ```python import ast tree = ast.parse(source) the_tuple = tree.body[0].value for node in the_tuple.elts: print(ast.dump(node)) ``` Output: ```python Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load()) Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load()) Attribute(value=Name(id='rect', ctx=Load()), attr='area', ctx=Load()) ``` Now to actually use the library. First construct an Evaluator: ```python from pure_eval import Evaluator evaluator = Evaluator({"rect": rect}) ``` The argument to `Evaluator` should be a mapping from variable names to their values. Or if you have access to the stack frame where `rect` is defined, you can instead use: ```python evaluator = Evaluator.from_frame(frame) ``` Now to evaluate some nodes, using `evaluator[node]`: ```python print("rect.width:", evaluator[the_tuple.elts[0]]) print("rect:", evaluator[the_tuple.elts[0].value]) ``` Output: ``` rect.width: 3 rect: <__main__.Rectangle object at 0x105b0dd30> ``` OK, but you could have done the same thing with `eval`. The useful part is that it will refuse to evaluate the property `rect.area` because that would trigger unknown code. If we try, it'll raise a `CannotEval` exception. ```python from pure_eval import CannotEval try: print("rect.area:", evaluator[the_tuple.elts[2]]) # fails except CannotEval as e: print(e) # prints CannotEval ``` To find all the expressions that can be evaluated in a tree: ```python for node, value in evaluator.find_expressions(tree): print(ast.dump(node), value) ``` Output: ```python Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load()) 3 Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load()) 5 Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30> Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30> Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30> ``` Note that this includes `rect` three times, once for each appearance in the source code. Since all these nodes are equivalent, we can group them together: ```python from pure_eval import group_expressions for nodes, values in group_expressions(evaluator.find_expressions(tree)): print(len(nodes), "nodes with value:", values) ``` Output: ``` 1 nodes with value: 3 1 nodes with value: 5 3 nodes with value: <__main__.Rectangle object at 0x10d374d30> ``` If we want to list all the expressions in a tree, we may want to filter out certain expressions whose values are obvious. For example, suppose we have a function `foo`: ```python def foo(): pass ``` If we refer to `foo` by its name as usual, then that's not interesting: ```python from pure_eval import is_expression_interesting node = ast.parse('foo').body[0].value print(ast.dump(node)) print(is_expression_interesting(node, foo)) ``` Output: ```python Name(id='foo', ctx=Load()) False ``` But if we refer to it by a different name, then it's interesting: ```python node = ast.parse('bar').body[0].value print(ast.dump(node)) print(is_expression_interesting(node, foo)) ``` Output: ```python Name(id='bar', ctx=Load()) True ``` In general `is_expression_interesting` returns False for the following values: - Literals (e.g. `123`, `'abc'`, `[1, 2, 3]`, `{'a': (), 'b': ([1, 2], [3])}`) - Variables or attributes whose name is equal to the value's `__name__`, such as `foo` above or `self.foo` if it was a method. - Builtins (e.g. `len`) referred to by their usual name. To make things easier, you can combine finding expressions, grouping them, and filtering out the obvious ones with: ```python evaluator.interesting_expressions_grouped(root) ``` To get the source code of an AST node, I recommend [asttokens](https://github.com/gristlabs/asttokens). Here's a complete example that brings it all together: ```python from asttokens import ASTTokens from pure_eval import Evaluator source = """ x = 1 d = {x: 2} y = d[x] """ names = {} exec(source, names) atok = ASTTokens(source, parse=True) for nodes, value in Evaluator(names).interesting_expressions_grouped(atok.tree): print(atok.get_text(nodes[0]), "=", value) ``` Output: ```python x = 1 d = {1: 2} y = 2 d[x] = 2 ```