"""Utilities to manipulate JSON objects.""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import math import numbers import re import types import warnings from binascii import b2a_base64 from collections.abc import Iterable from datetime import datetime from typing import Optional from typing import Union from dateutil.parser import parse as _dateutil_parse # type: ignore from dateutil.tz import tzlocal # type: ignore next_attr_name = "__next__" # Not sure what downstream library uses this, but left it to be safe # ----------------------------------------------------------------------------- # Globals and constants # ----------------------------------------------------------------------------- # timestamp formats ISO8601 = "%Y-%m-%dT%H:%M:%S.%f" ISO8601_PAT = re.compile( r"^(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})(\.\d{1,6})?(Z|([\+\-]\d{2}:?\d{2}))?$" ) # holy crap, strptime is not threadsafe. # Calling it once at import seems to help. datetime.strptime("1", "%d") # ----------------------------------------------------------------------------- # Classes and functions # ----------------------------------------------------------------------------- def _ensure_tzinfo(dt: datetime) -> datetime: """Ensure a datetime object has tzinfo If no tzinfo is present, add tzlocal """ if not dt.tzinfo: # No more naïve datetime objects! warnings.warn( "Interpreting naive datetime as local %s. Please add timezone info to timestamps." % dt, DeprecationWarning, stacklevel=4, ) dt = dt.replace(tzinfo=tzlocal()) return dt def parse_date(s: Optional[str]) -> Optional[Union[str, datetime]]: """parse an ISO8601 date string If it is None or not a valid ISO8601 timestamp, it will be returned unmodified. Otherwise, it will return a datetime object. """ if s is None: return s m = ISO8601_PAT.match(s) if m: dt = _dateutil_parse(s) return _ensure_tzinfo(dt) return s def extract_dates(obj): """extract ISO8601 dates from unpacked JSON""" if isinstance(obj, dict): new_obj = {} # don't clobber for k, v in obj.items(): new_obj[k] = extract_dates(v) obj = new_obj elif isinstance(obj, (list, tuple)): obj = [extract_dates(o) for o in obj] elif isinstance(obj, str): obj = parse_date(obj) return obj def squash_dates(obj): """squash datetime objects into ISO8601 strings""" if isinstance(obj, dict): obj = dict(obj) # don't clobber for k, v in obj.items(): obj[k] = squash_dates(v) elif isinstance(obj, (list, tuple)): obj = [squash_dates(o) for o in obj] elif isinstance(obj, datetime): obj = obj.isoformat() return obj def date_default(obj): """DEPRECATED: Use jupyter_client.jsonutil.json_default""" warnings.warn( "date_default is deprecated since jupyter_client 7.0.0." " Use jupyter_client.jsonutil.json_default.", stacklevel=2, ) return json_default(obj) def json_default(obj): """default function for packing objects in JSON.""" if isinstance(obj, datetime): obj = _ensure_tzinfo(obj) return obj.isoformat().replace('+00:00', 'Z') if isinstance(obj, bytes): return b2a_base64(obj).decode('ascii') if isinstance(obj, Iterable): return list(obj) if isinstance(obj, numbers.Integral): return int(obj) if isinstance(obj, numbers.Real): return float(obj) raise TypeError("%r is not JSON serializable" % obj) # Copy of the old ipykernel's json_clean # This is temporary, it should be removed when we deprecate support for # non-valid JSON messages def json_clean(obj): # types that are 'atomic' and ok in json as-is. atomic_ok = (str, type(None)) # containers that we need to convert into lists container_to_list = (tuple, set, types.GeneratorType) # Since bools are a subtype of Integrals, which are a subtype of Reals, # we have to check them in that order. if isinstance(obj, bool): return obj if isinstance(obj, numbers.Integral): # cast int to int, in case subclasses override __str__ (e.g. boost enum, #4598) return int(obj) if isinstance(obj, numbers.Real): # cast out-of-range floats to their reprs if math.isnan(obj) or math.isinf(obj): return repr(obj) return float(obj) if isinstance(obj, atomic_ok): return obj if isinstance(obj, bytes): # unanmbiguous binary data is base64-encoded # (this probably should have happened upstream) return b2a_base64(obj).decode('ascii') if isinstance(obj, container_to_list) or ( hasattr(obj, '__iter__') and hasattr(obj, next_attr_name) ): obj = list(obj) if isinstance(obj, list): return [json_clean(x) for x in obj] if isinstance(obj, dict): # First, validate that the dict won't lose data in conversion due to # key collisions after stringification. This can happen with keys like # True and 'true' or 1 and '1', which collide in JSON. nkeys = len(obj) nkeys_collapsed = len(set(map(str, obj))) if nkeys != nkeys_collapsed: raise ValueError( 'dict cannot be safely converted to JSON: ' 'key collision would lead to dropped values' ) # If all OK, proceed by making the new dict that will be json-safe out = {} for k, v in obj.items(): out[str(k)] = json_clean(v) return out if isinstance(obj, datetime): return obj.strftime(ISO8601) # we don't understand it, it's probably an unserializable object raise ValueError("Can't clean for JSON: %r" % obj)