""" There are a couple of classes documented in here: - :class:`.BaseName` as an abstact base class for almost everything. - :class:`.Name` used in a lot of places - :class:`.Completion` for completions - :class:`.BaseSignature` as a base class for signatures - :class:`.Signature` for :meth:`.Script.get_signatures` only - :class:`.ParamName` used for parameters of signatures - :class:`.Refactoring` for refactorings - :class:`.SyntaxError` for :meth:`.Script.get_syntax_errors` only These classes are the much biggest part of the API, because they contain the interesting information about all operations. """ import re from pathlib import Path from typing import Optional from parso.tree import search_ancestor from jedi import settings from jedi import debug from jedi.inference.utils import unite from jedi.cache import memoize_method from jedi.inference.compiled.mixed import MixedName from jedi.inference.names import ImportName, SubModuleName from jedi.inference.gradual.stub_value import StubModuleValue from jedi.inference.gradual.conversion import convert_names, convert_values from jedi.inference.base_value import ValueSet, HasNoContext from jedi.api.keywords import KeywordName from jedi.api import completion_cache from jedi.api.helpers import filter_follow_imports def _sort_names_by_start_pos(names): return sorted(names, key=lambda s: s.start_pos or (0, 0)) def defined_names(inference_state, value): """ List sub-definitions (e.g., methods in class). :type scope: Scope :rtype: list of Name """ try: context = value.as_context() except HasNoContext: return [] filter = next(context.get_filters()) names = [name for name in filter.values()] return [Name(inference_state, n) for n in _sort_names_by_start_pos(names)] def _values_to_definitions(values): return [Name(c.inference_state, c.name) for c in values] class BaseName: """ The base class for all definitions, completions and signatures. """ _mapping = { 'posixpath': 'os.path', 'riscospath': 'os.path', 'ntpath': 'os.path', 'os2emxpath': 'os.path', 'macpath': 'os.path', 'genericpath': 'os.path', 'posix': 'os', '_io': 'io', '_functools': 'functools', '_collections': 'collections', '_socket': 'socket', '_sqlite3': 'sqlite3', } _tuple_mapping = dict((tuple(k.split('.')), v) for (k, v) in { 'argparse._ActionsContainer': 'argparse.ArgumentParser', }.items()) def __init__(self, inference_state, name): self._inference_state = inference_state self._name = name """ An instance of :class:`parso.python.tree.Name` subclass. """ self.is_keyword = isinstance(self._name, KeywordName) @memoize_method def _get_module_context(self): # This can take a while to complete, because in the worst case of # imports (consider `import a` completions), we need to load all # modules starting with a first. return self._name.get_root_context() @property def module_path(self) -> Optional[Path]: """ Shows the file path of a module. e.g. ``/usr/lib/python3.9/os.py`` """ module = self._get_module_context() if module.is_stub() or not module.is_compiled(): # Compiled modules should not return a module path even if they # have one. path: Optional[Path] = self._get_module_context().py__file__() if path is not None: return path return None @property def name(self): """ Name of variable/function/class/module. For example, for ``x = None`` it returns ``'x'``. :rtype: str or None """ return self._name.get_public_name() @property def type(self): """ The type of the definition. Here is an example of the value of this attribute. Let's consider the following source. As what is in ``variable`` is unambiguous to Jedi, :meth:`jedi.Script.infer` should return a list of definition for ``sys``, ``f``, ``C`` and ``x``. >>> from jedi import Script >>> source = ''' ... import keyword ... ... class C: ... pass ... ... class D: ... pass ... ... x = D() ... ... def f(): ... pass ... ... for variable in [keyword, f, C, x]: ... variable''' >>> script = Script(source) >>> defs = script.infer() Before showing what is in ``defs``, let's sort it by :attr:`line` so that it is easy to relate the result to the source code. >>> defs = sorted(defs, key=lambda d: d.line) >>> print(defs) # doctest: +NORMALIZE_WHITESPACE [, , , ] Finally, here is what you can get from :attr:`type`: >>> defs = [d.type for d in defs] >>> defs[0] 'module' >>> defs[1] 'class' >>> defs[2] 'instance' >>> defs[3] 'function' Valid values for type are ``module``, ``class``, ``instance``, ``function``, ``param``, ``path``, ``keyword``, ``property`` and ``statement``. """ tree_name = self._name.tree_name resolve = False if tree_name is not None: # TODO move this to their respective names. definition = tree_name.get_definition() if definition is not None and definition.type == 'import_from' and \ tree_name.is_definition(): resolve = True if isinstance(self._name, SubModuleName) or resolve: for value in self._name.infer(): return value.api_type return self._name.api_type @property def module_name(self): """ The module name, a bit similar to what ``__name__`` is in a random Python module. >>> from jedi import Script >>> source = 'import json' >>> script = Script(source, path='example.py') >>> d = script.infer()[0] >>> print(d.module_name) # doctest: +ELLIPSIS json """ return self._get_module_context().py__name__() def in_builtin_module(self): """ Returns True, if this is a builtin module. """ value = self._get_module_context().get_value() if isinstance(value, StubModuleValue): return any(v.is_compiled() for v in value.non_stub_value_set) return value.is_compiled() @property def line(self): """The line where the definition occurs (starting with 1).""" start_pos = self._name.start_pos if start_pos is None: return None return start_pos[0] @property def column(self): """The column where the definition occurs (starting with 0).""" start_pos = self._name.start_pos if start_pos is None: return None return start_pos[1] def get_definition_start_position(self): """ The (row, column) of the start of the definition range. Rows start with 1, columns start with 0. :rtype: Optional[Tuple[int, int]] """ if self._name.tree_name is None: return None definition = self._name.tree_name.get_definition() if definition is None: return self._name.start_pos return definition.start_pos def get_definition_end_position(self): """ The (row, column) of the end of the definition range. Rows start with 1, columns start with 0. :rtype: Optional[Tuple[int, int]] """ if self._name.tree_name is None: return None definition = self._name.tree_name.get_definition() if definition is None: return self._name.tree_name.end_pos if self.type in ("function", "class"): last_leaf = definition.get_last_leaf() if last_leaf.type == "newline": return last_leaf.get_previous_leaf().end_pos return last_leaf.end_pos return definition.end_pos def docstring(self, raw=False, fast=True): r""" Return a document string for this completion object. Example: >>> from jedi import Script >>> source = '''\ ... def f(a, b=1): ... "Document for function f." ... ''' >>> script = Script(source, path='example.py') >>> doc = script.infer(1, len('def f'))[0].docstring() >>> print(doc) f(a, b=1) Document for function f. Notice that useful extra information is added to the actual docstring, e.g. function signatures are prepended to their docstrings. If you need the actual docstring, use ``raw=True`` instead. >>> print(script.infer(1, len('def f'))[0].docstring(raw=True)) Document for function f. :param fast: Don't follow imports that are only one level deep like ``import foo``, but follow ``from foo import bar``. This makes sense for speed reasons. Completing `import a` is slow if you use the ``foo.docstring(fast=False)`` on every object, because it parses all libraries starting with ``a``. """ if isinstance(self._name, ImportName) and fast: return '' doc = self._get_docstring() if raw: return doc signature_text = self._get_docstring_signature() if signature_text and doc: return signature_text + '\n\n' + doc else: return signature_text + doc def _get_docstring(self): return self._name.py__doc__() def _get_docstring_signature(self): return '\n'.join( signature.to_string() for signature in self._get_signatures(for_docstring=True) ) @property def description(self): """ A description of the :class:`.Name` object, which is heavily used in testing. e.g. for ``isinstance`` it returns ``def isinstance``. Example: >>> from jedi import Script >>> source = ''' ... def f(): ... pass ... ... class C: ... pass ... ... variable = f if random.choice([0,1]) else C''' >>> script = Script(source) # line is maximum by default >>> defs = script.infer(column=3) >>> defs = sorted(defs, key=lambda d: d.line) >>> print(defs) # doctest: +NORMALIZE_WHITESPACE [, ] >>> str(defs[0].description) 'def f' >>> str(defs[1].description) 'class C' """ typ = self.type tree_name = self._name.tree_name if typ == 'param': return typ + ' ' + self._name.to_string() if typ in ('function', 'class', 'module', 'instance') or tree_name is None: if typ == 'function': # For the description we want a short and a pythonic way. typ = 'def' return typ + ' ' + self._name.get_public_name() definition = tree_name.get_definition(include_setitem=True) or tree_name # Remove the prefix, because that's not what we want for get_code # here. txt = definition.get_code(include_prefix=False) # Delete comments: txt = re.sub(r'#[^\n]+\n', ' ', txt) # Delete multi spaces/newlines txt = re.sub(r'\s+', ' ', txt).strip() return txt @property def full_name(self): """ Dot-separated path of this object. It is in the form of ``[.[...]][.]``. It is useful when you want to look up Python manual of the object at hand. Example: >>> from jedi import Script >>> source = ''' ... import os ... os.path.join''' >>> script = Script(source, path='example.py') >>> print(script.infer(3, len('os.path.join'))[0].full_name) os.path.join Notice that it returns ``'os.path.join'`` instead of (for example) ``'posixpath.join'``. This is not correct, since the modules name would be `````. However most users find the latter more practical. """ if not self._name.is_value_name: return None names = self._name.get_qualified_names(include_module_names=True) if names is None: return None names = list(names) try: names[0] = self._mapping[names[0]] except KeyError: pass return '.'.join(names) def is_stub(self): """ Returns True if the current name is defined in a stub file. """ if not self._name.is_value_name: return False return self._name.get_root_context().is_stub() def is_side_effect(self): """ Checks if a name is defined as ``self.foo = 3``. In case of self, this function would return False, for foo it would return True. """ tree_name = self._name.tree_name if tree_name is None: return False return tree_name.is_definition() and tree_name.parent.type == 'trailer' @debug.increase_indent_cm('goto on name') def goto(self, *, follow_imports=False, follow_builtin_imports=False, only_stubs=False, prefer_stubs=False): """ Like :meth:`.Script.goto` (also supports the same params), but does it for the current name. This is typically useful if you are using something like :meth:`.Script.get_names()`. :param follow_imports: The goto call will follow imports. :param follow_builtin_imports: If follow_imports is True will try to look up names in builtins (i.e. compiled or extension modules). :param only_stubs: Only return stubs for this goto call. :param prefer_stubs: Prefer stubs to Python objects for this goto call. :rtype: list of :class:`Name` """ if not self._name.is_value_name: return [] names = self._name.goto() if follow_imports: names = filter_follow_imports(names, follow_builtin_imports) names = convert_names( names, only_stubs=only_stubs, prefer_stubs=prefer_stubs, ) return [self if n == self._name else Name(self._inference_state, n) for n in names] @debug.increase_indent_cm('infer on name') def infer(self, *, only_stubs=False, prefer_stubs=False): """ Like :meth:`.Script.infer`, it can be useful to understand which type the current name has. Return the actual definitions. I strongly recommend not using it for your completions, because it might slow down |jedi|. If you want to read only a few objects (<=20), it might be useful, especially to get the original docstrings. The basic problem of this function is that it follows all results. This means with 1000 completions (e.g. numpy), it's just very, very slow. :param only_stubs: Only return stubs for this goto call. :param prefer_stubs: Prefer stubs to Python objects for this type inference call. :rtype: list of :class:`Name` """ assert not (only_stubs and prefer_stubs) if not self._name.is_value_name: return [] # First we need to make sure that we have stub names (if possible) that # we can follow. If we don't do that, we can end up with the inferred # results of Python objects instead of stubs. names = convert_names([self._name], prefer_stubs=True) values = convert_values( ValueSet.from_sets(n.infer() for n in names), only_stubs=only_stubs, prefer_stubs=prefer_stubs, ) resulting_names = [c.name for c in values] return [self if n == self._name else Name(self._inference_state, n) for n in resulting_names] def parent(self): """ Returns the parent scope of this identifier. :rtype: Name """ if not self._name.is_value_name: return None if self.type in ('function', 'class', 'param') and self._name.tree_name is not None: # Since the parent_context doesn't really match what the user # thinks of that the parent is here, we do these cases separately. # The reason for this is the following: # - class: Nested classes parent_context is always the # parent_context of the most outer one. # - function: Functions in classes have the module as # parent_context. # - param: The parent_context of a param is not its function but # e.g. the outer class or module. cls_or_func_node = self._name.tree_name.get_definition() parent = search_ancestor(cls_or_func_node, 'funcdef', 'classdef', 'file_input') context = self._get_module_context().create_value(parent).as_context() else: context = self._name.parent_context if context is None: return None while context.name is None: # Happens for comprehension contexts context = context.parent_context return Name(self._inference_state, context.name) def __repr__(self): return "<%s %sname=%r, description=%r>" % ( self.__class__.__name__, 'full_' if self.full_name else '', self.full_name or self.name, self.description, ) def get_line_code(self, before=0, after=0): """ Returns the line of code where this object was defined. :param before: Add n lines before the current line to the output. :param after: Add n lines after the current line to the output. :return str: Returns the line(s) of code or an empty string if it's a builtin. """ if not self._name.is_value_name: return '' lines = self._name.get_root_context().code_lines if lines is None: # Probably a builtin module, just ignore in that case. return '' index = self._name.start_pos[0] - 1 start_index = max(index - before, 0) return ''.join(lines[start_index:index + after + 1]) def _get_signatures(self, for_docstring=False): if self._name.api_type == 'property': return [] if for_docstring and self._name.api_type == 'statement' and not self.is_stub(): # For docstrings we don't resolve signatures if they are simple # statements and not stubs. This is a speed optimization. return [] if isinstance(self._name, MixedName): # While this would eventually happen anyway, it's basically just a # shortcut to not infer anything tree related, because it's really # not necessary. return self._name.infer_compiled_value().get_signatures() names = convert_names([self._name], prefer_stubs=True) return [sig for name in names for sig in name.infer().get_signatures()] def get_signatures(self): """ Returns all potential signatures for a function or a class. Multiple signatures are typical if you use Python stubs with ``@overload``. :rtype: list of :class:`BaseSignature` """ return [ BaseSignature(self._inference_state, s) for s in self._get_signatures() ] def execute(self): """ Uses type inference to "execute" this identifier and returns the executed objects. :rtype: list of :class:`Name` """ return _values_to_definitions(self._name.infer().execute_with_values()) def get_type_hint(self): """ Returns type hints like ``Iterable[int]`` or ``Union[int, str]``. This method might be quite slow, especially for functions. The problem is finding executions for those functions to return something like ``Callable[[int, str], str]``. :rtype: str """ return self._name.infer().get_type_hint() class Completion(BaseName): """ ``Completion`` objects are returned from :meth:`.Script.complete`. They provide additional information about a completion. """ def __init__(self, inference_state, name, stack, like_name_length, is_fuzzy, cached_name=None): super().__init__(inference_state, name) self._like_name_length = like_name_length self._stack = stack self._is_fuzzy = is_fuzzy self._cached_name = cached_name # Completion objects with the same Completion name (which means # duplicate items in the completion) self._same_name_completions = [] def _complete(self, like_name): append = '' if settings.add_bracket_after_function \ and self.type == 'function': append = '(' name = self._name.get_public_name() if like_name: name = name[self._like_name_length:] return name + append @property def complete(self): """ Only works with non-fuzzy completions. Returns None if fuzzy completions are used. Return the rest of the word, e.g. completing ``isinstance``:: isinstan# <-- Cursor is here would return the string 'ce'. It also adds additional stuff, depending on your ``settings.py``. Assuming the following function definition:: def foo(param=0): pass completing ``foo(par`` would give a ``Completion`` which ``complete`` would be ``am=``. """ if self._is_fuzzy: return None return self._complete(True) @property def name_with_symbols(self): """ Similar to :attr:`.name`, but like :attr:`.name` returns also the symbols, for example assuming the following function definition:: def foo(param=0): pass completing ``foo(`` would give a ``Completion`` which ``name_with_symbols`` would be "param=". """ return self._complete(False) def docstring(self, raw=False, fast=True): """ Documented under :meth:`BaseName.docstring`. """ if self._like_name_length >= 3: # In this case we can just resolve the like name, because we # wouldn't load like > 100 Python modules anymore. fast = False return super().docstring(raw=raw, fast=fast) def _get_docstring(self): if self._cached_name is not None: return completion_cache.get_docstring( self._cached_name, self._name.get_public_name(), lambda: self._get_cache() ) return super()._get_docstring() def _get_docstring_signature(self): if self._cached_name is not None: return completion_cache.get_docstring_signature( self._cached_name, self._name.get_public_name(), lambda: self._get_cache() ) return super()._get_docstring_signature() def _get_cache(self): return ( super().type, super()._get_docstring_signature(), super()._get_docstring(), ) @property def type(self): """ Documented under :meth:`BaseName.type`. """ # Purely a speed optimization. if self._cached_name is not None: return completion_cache.get_type( self._cached_name, self._name.get_public_name(), lambda: self._get_cache() ) return super().type def get_completion_prefix_length(self): """ Returns the length of the prefix being completed. For example, completing ``isinstance``:: isinstan# <-- Cursor is here would return 8, because len('isinstan') == 8. Assuming the following function definition:: def foo(param=0): pass completing ``foo(par`` would return 3. """ return self._like_name_length def __repr__(self): return '<%s: %s>' % (type(self).__name__, self._name.get_public_name()) class Name(BaseName): """ *Name* objects are returned from many different APIs including :meth:`.Script.goto` or :meth:`.Script.infer`. """ def __init__(self, inference_state, definition): super().__init__(inference_state, definition) @memoize_method def defined_names(self): """ List sub-definitions (e.g., methods in class). :rtype: list of :class:`Name` """ defs = self._name.infer() return sorted( unite(defined_names(self._inference_state, d) for d in defs), key=lambda s: s._name.start_pos or (0, 0) ) def is_definition(self): """ Returns True, if defined as a name in a statement, function or class. Returns False, if it's a reference to such a definition. """ if self._name.tree_name is None: return True else: return self._name.tree_name.is_definition() def __eq__(self, other): return self._name.start_pos == other._name.start_pos \ and self.module_path == other.module_path \ and self.name == other.name \ and self._inference_state == other._inference_state def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash((self._name.start_pos, self.module_path, self.name, self._inference_state)) class BaseSignature(Name): """ These signatures are returned by :meth:`BaseName.get_signatures` calls. """ def __init__(self, inference_state, signature): super().__init__(inference_state, signature.name) self._signature = signature @property def params(self): """ Returns definitions for all parameters that a signature defines. This includes stuff like ``*args`` and ``**kwargs``. :rtype: list of :class:`.ParamName` """ return [ParamName(self._inference_state, n) for n in self._signature.get_param_names(resolve_stars=True)] def to_string(self): """ Returns a text representation of the signature. This could for example look like ``foo(bar, baz: int, **kwargs)``. :rtype: str """ return self._signature.to_string() class Signature(BaseSignature): """ A full signature object is the return value of :meth:`.Script.get_signatures`. """ def __init__(self, inference_state, signature, call_details): super().__init__(inference_state, signature) self._call_details = call_details self._signature = signature @property def index(self): """ Returns the param index of the current cursor position. Returns None if the index cannot be found in the curent call. :rtype: int """ return self._call_details.calculate_index( self._signature.get_param_names(resolve_stars=True) ) @property def bracket_start(self): """ Returns a line/column tuple of the bracket that is responsible for the last function call. The first line is 1 and the first column 0. :rtype: int, int """ return self._call_details.bracket_leaf.start_pos def __repr__(self): return '<%s: index=%r %s>' % ( type(self).__name__, self.index, self._signature.to_string(), ) class ParamName(Name): def infer_default(self): """ Returns default values like the ``1`` of ``def foo(x=1):``. :rtype: list of :class:`.Name` """ return _values_to_definitions(self._name.infer_default()) def infer_annotation(self, **kwargs): """ :param execute_annotation: Default True; If False, values are not executed and classes are returned instead of instances. :rtype: list of :class:`.Name` """ return _values_to_definitions(self._name.infer_annotation(ignore_stars=True, **kwargs)) def to_string(self): """ Returns a simple representation of a param, like ``f: Callable[..., Any]``. :rtype: str """ return self._name.to_string() @property def kind(self): """ Returns an enum instance of :mod:`inspect`'s ``Parameter`` enum. :rtype: :py:attr:`inspect.Parameter.kind` """ return self._name.get_kind()