You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
10 KiB
Python
258 lines
10 KiB
Python
2 years ago
|
from collections import defaultdict
|
||
|
from inspect import Parameter
|
||
|
|
||
|
from jedi import debug
|
||
|
from jedi.inference.utils import PushBackIterator
|
||
|
from jedi.inference import analysis
|
||
|
from jedi.inference.lazy_value import LazyKnownValue, \
|
||
|
LazyTreeValue, LazyUnknownValue
|
||
|
from jedi.inference.value import iterable
|
||
|
from jedi.inference.names import ParamName
|
||
|
|
||
|
|
||
|
def _add_argument_issue(error_name, lazy_value, message):
|
||
|
if isinstance(lazy_value, LazyTreeValue):
|
||
|
node = lazy_value.data
|
||
|
if node.parent.type == 'argument':
|
||
|
node = node.parent
|
||
|
return analysis.add(lazy_value.context, error_name, node, message)
|
||
|
|
||
|
|
||
|
class ExecutedParamName(ParamName):
|
||
|
def __init__(self, function_value, arguments, param_node, lazy_value, is_default=False):
|
||
|
super().__init__(function_value, param_node.name, arguments=arguments)
|
||
|
self._lazy_value = lazy_value
|
||
|
self._is_default = is_default
|
||
|
|
||
|
def infer(self):
|
||
|
return self._lazy_value.infer()
|
||
|
|
||
|
def matches_signature(self):
|
||
|
if self._is_default:
|
||
|
return True
|
||
|
argument_values = self.infer().py__class__()
|
||
|
if self.get_kind() in (Parameter.VAR_POSITIONAL, Parameter.VAR_KEYWORD):
|
||
|
return True
|
||
|
annotations = self.infer_annotation(execute_annotation=False)
|
||
|
if not annotations:
|
||
|
# If we cannot infer annotations - or there aren't any - pretend
|
||
|
# that the signature matches.
|
||
|
return True
|
||
|
matches = any(c1.is_sub_class_of(c2)
|
||
|
for c1 in argument_values
|
||
|
for c2 in annotations.gather_annotation_classes())
|
||
|
debug.dbg("param compare %s: %s <=> %s",
|
||
|
matches, argument_values, annotations, color='BLUE')
|
||
|
return matches
|
||
|
|
||
|
def __repr__(self):
|
||
|
return '<%s: %s>' % (self.__class__.__name__, self.string_name)
|
||
|
|
||
|
|
||
|
def get_executed_param_names_and_issues(function_value, arguments):
|
||
|
"""
|
||
|
Return a tuple of:
|
||
|
- a list of `ExecutedParamName`s corresponding to the arguments of the
|
||
|
function execution `function_value`, containing the inferred value of
|
||
|
those arguments (whether explicit or default)
|
||
|
- a list of the issues encountered while building that list
|
||
|
|
||
|
For example, given:
|
||
|
```
|
||
|
def foo(a, b, c=None, d='d'): ...
|
||
|
|
||
|
foo(42, c='c')
|
||
|
```
|
||
|
|
||
|
Then for the execution of `foo`, this will return a tuple containing:
|
||
|
- a list with entries for each parameter a, b, c & d; the entries for a,
|
||
|
c, & d will have their values (42, 'c' and 'd' respectively) included.
|
||
|
- a list with a single entry about the lack of a value for `b`
|
||
|
"""
|
||
|
def too_many_args(argument):
|
||
|
m = _error_argument_count(funcdef, len(unpacked_va))
|
||
|
# Just report an error for the first param that is not needed (like
|
||
|
# cPython).
|
||
|
if arguments.get_calling_nodes():
|
||
|
# There might not be a valid calling node so check for that first.
|
||
|
issues.append(
|
||
|
_add_argument_issue(
|
||
|
'type-error-too-many-arguments',
|
||
|
argument,
|
||
|
message=m
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
issues.append(None)
|
||
|
debug.warning('non-public warning: %s', m)
|
||
|
|
||
|
issues = [] # List[Optional[analysis issue]]
|
||
|
result_params = []
|
||
|
param_dict = {}
|
||
|
funcdef = function_value.tree_node
|
||
|
# Default params are part of the value where the function was defined.
|
||
|
# This means that they might have access on class variables that the
|
||
|
# function itself doesn't have.
|
||
|
default_param_context = function_value.get_default_param_context()
|
||
|
|
||
|
for param in funcdef.get_params():
|
||
|
param_dict[param.name.value] = param
|
||
|
unpacked_va = list(arguments.unpack(funcdef))
|
||
|
var_arg_iterator = PushBackIterator(iter(unpacked_va))
|
||
|
|
||
|
non_matching_keys = defaultdict(lambda: [])
|
||
|
keys_used = {}
|
||
|
keys_only = False
|
||
|
had_multiple_value_error = False
|
||
|
for param in funcdef.get_params():
|
||
|
# The value and key can both be null. There, the defaults apply.
|
||
|
# args / kwargs will just be empty arrays / dicts, respectively.
|
||
|
# Wrong value count is just ignored. If you try to test cases that are
|
||
|
# not allowed in Python, Jedi will maybe not show any completions.
|
||
|
is_default = False
|
||
|
key, argument = next(var_arg_iterator, (None, None))
|
||
|
while key is not None:
|
||
|
keys_only = True
|
||
|
try:
|
||
|
key_param = param_dict[key]
|
||
|
except KeyError:
|
||
|
non_matching_keys[key] = argument
|
||
|
else:
|
||
|
if key in keys_used:
|
||
|
had_multiple_value_error = True
|
||
|
m = ("TypeError: %s() got multiple values for keyword argument '%s'."
|
||
|
% (funcdef.name, key))
|
||
|
for contextualized_node in arguments.get_calling_nodes():
|
||
|
issues.append(
|
||
|
analysis.add(contextualized_node.context,
|
||
|
'type-error-multiple-values',
|
||
|
contextualized_node.node, message=m)
|
||
|
)
|
||
|
else:
|
||
|
keys_used[key] = ExecutedParamName(
|
||
|
function_value, arguments, key_param, argument)
|
||
|
key, argument = next(var_arg_iterator, (None, None))
|
||
|
|
||
|
try:
|
||
|
result_params.append(keys_used[param.name.value])
|
||
|
continue
|
||
|
except KeyError:
|
||
|
pass
|
||
|
|
||
|
if param.star_count == 1:
|
||
|
# *args param
|
||
|
lazy_value_list = []
|
||
|
if argument is not None:
|
||
|
lazy_value_list.append(argument)
|
||
|
for key, argument in var_arg_iterator:
|
||
|
# Iterate until a key argument is found.
|
||
|
if key:
|
||
|
var_arg_iterator.push_back((key, argument))
|
||
|
break
|
||
|
lazy_value_list.append(argument)
|
||
|
seq = iterable.FakeTuple(function_value.inference_state, lazy_value_list)
|
||
|
result_arg = LazyKnownValue(seq)
|
||
|
elif param.star_count == 2:
|
||
|
if argument is not None:
|
||
|
too_many_args(argument)
|
||
|
# **kwargs param
|
||
|
dct = iterable.FakeDict(function_value.inference_state, dict(non_matching_keys))
|
||
|
result_arg = LazyKnownValue(dct)
|
||
|
non_matching_keys = {}
|
||
|
else:
|
||
|
# normal param
|
||
|
if argument is None:
|
||
|
# No value: Return an empty container
|
||
|
if param.default is None:
|
||
|
result_arg = LazyUnknownValue()
|
||
|
if not keys_only:
|
||
|
for contextualized_node in arguments.get_calling_nodes():
|
||
|
m = _error_argument_count(funcdef, len(unpacked_va))
|
||
|
issues.append(
|
||
|
analysis.add(
|
||
|
contextualized_node.context,
|
||
|
'type-error-too-few-arguments',
|
||
|
contextualized_node.node,
|
||
|
message=m,
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
result_arg = LazyTreeValue(default_param_context, param.default)
|
||
|
is_default = True
|
||
|
else:
|
||
|
result_arg = argument
|
||
|
|
||
|
result_params.append(ExecutedParamName(
|
||
|
function_value, arguments, param, result_arg, is_default=is_default
|
||
|
))
|
||
|
if not isinstance(result_arg, LazyUnknownValue):
|
||
|
keys_used[param.name.value] = result_params[-1]
|
||
|
|
||
|
if keys_only:
|
||
|
# All arguments should be handed over to the next function. It's not
|
||
|
# about the values inside, it's about the names. Jedi needs to now that
|
||
|
# there's nothing to find for certain names.
|
||
|
for k in set(param_dict) - set(keys_used):
|
||
|
param = param_dict[k]
|
||
|
|
||
|
if not (non_matching_keys or had_multiple_value_error
|
||
|
or param.star_count or param.default):
|
||
|
# add a warning only if there's not another one.
|
||
|
for contextualized_node in arguments.get_calling_nodes():
|
||
|
m = _error_argument_count(funcdef, len(unpacked_va))
|
||
|
issues.append(
|
||
|
analysis.add(contextualized_node.context,
|
||
|
'type-error-too-few-arguments',
|
||
|
contextualized_node.node, message=m)
|
||
|
)
|
||
|
|
||
|
for key, lazy_value in non_matching_keys.items():
|
||
|
m = "TypeError: %s() got an unexpected keyword argument '%s'." \
|
||
|
% (funcdef.name, key)
|
||
|
issues.append(
|
||
|
_add_argument_issue(
|
||
|
'type-error-keyword-argument',
|
||
|
lazy_value,
|
||
|
message=m
|
||
|
)
|
||
|
)
|
||
|
|
||
|
remaining_arguments = list(var_arg_iterator)
|
||
|
if remaining_arguments:
|
||
|
first_key, lazy_value = remaining_arguments[0]
|
||
|
too_many_args(lazy_value)
|
||
|
return result_params, issues
|
||
|
|
||
|
|
||
|
def get_executed_param_names(function_value, arguments):
|
||
|
"""
|
||
|
Return a list of `ExecutedParamName`s corresponding to the arguments of the
|
||
|
function execution `function_value`, containing the inferred value of those
|
||
|
arguments (whether explicit or default). Any issues building this list (for
|
||
|
example required arguments which are missing in the invocation) are ignored.
|
||
|
|
||
|
For example, given:
|
||
|
```
|
||
|
def foo(a, b, c=None, d='d'): ...
|
||
|
|
||
|
foo(42, c='c')
|
||
|
```
|
||
|
|
||
|
Then for the execution of `foo`, this will return a list containing entries
|
||
|
for each parameter a, b, c & d; the entries for a, c, & d will have their
|
||
|
values (42, 'c' and 'd' respectively) included.
|
||
|
"""
|
||
|
return get_executed_param_names_and_issues(function_value, arguments)[0]
|
||
|
|
||
|
|
||
|
def _error_argument_count(funcdef, actual_count):
|
||
|
params = funcdef.get_params()
|
||
|
default_arguments = sum(1 for p in params if p.default or p.star_count)
|
||
|
|
||
|
if default_arguments == 0:
|
||
|
before = 'exactly '
|
||
|
else:
|
||
|
before = 'from %s to ' % (len(params) - default_arguments)
|
||
|
return ('TypeError: %s() takes %s%s arguments (%s given).'
|
||
|
% (funcdef.name, before, len(params), actual_count))
|