You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

203 lines
5.8 KiB
Python

2 years ago
import copy
import sys
import re
import os
from itertools import chain
from contextlib import contextmanager
from parso.python import tree
def is_stdlib_path(path):
# Python standard library paths look like this:
# /usr/lib/python3.9/...
# TODO The implementation below is probably incorrect and not complete.
parts = path.parts
if 'dist-packages' in parts or 'site-packages' in parts:
return False
base_path = os.path.join(sys.prefix, 'lib', 'python')
return bool(re.match(re.escape(base_path) + r'\d.\d', str(path)))
def deep_ast_copy(obj):
"""
Much, much faster than copy.deepcopy, but just for parser tree nodes.
"""
# If it's already in the cache, just return it.
new_obj = copy.copy(obj)
# Copy children
new_children = []
for child in obj.children:
if isinstance(child, tree.Leaf):
new_child = copy.copy(child)
new_child.parent = new_obj
else:
new_child = deep_ast_copy(child)
new_child.parent = new_obj
new_children.append(new_child)
new_obj.children = new_children
return new_obj
def infer_call_of_leaf(context, leaf, cut_own_trailer=False):
"""
Creates a "call" node that consist of all ``trailer`` and ``power``
objects. E.g. if you call it with ``append``::
list([]).append(3) or None
You would get a node with the content ``list([]).append`` back.
This generates a copy of the original ast node.
If you're using the leaf, e.g. the bracket `)` it will return ``list([])``.
We use this function for two purposes. Given an expression ``bar.foo``,
we may want to
- infer the type of ``foo`` to offer completions after foo
- infer the type of ``bar`` to be able to jump to the definition of foo
The option ``cut_own_trailer`` must be set to true for the second purpose.
"""
trailer = leaf.parent
if trailer.type == 'fstring':
from jedi.inference import compiled
return compiled.get_string_value_set(context.inference_state)
# The leaf may not be the last or first child, because there exist three
# different trailers: `( x )`, `[ x ]` and `.x`. In the first two examples
# we should not match anything more than x.
if trailer.type != 'trailer' or leaf not in (trailer.children[0], trailer.children[-1]):
if leaf == ':':
# Basically happens with foo[:] when the cursor is on the colon
from jedi.inference.base_value import NO_VALUES
return NO_VALUES
if trailer.type == 'atom':
return context.infer_node(trailer)
return context.infer_node(leaf)
power = trailer.parent
index = power.children.index(trailer)
if cut_own_trailer:
cut = index
else:
cut = index + 1
if power.type == 'error_node':
start = index
while True:
start -= 1
base = power.children[start]
if base.type != 'trailer':
break
trailers = power.children[start + 1:cut]
else:
base = power.children[0]
trailers = power.children[1:cut]
if base == 'await':
base = trailers[0]
trailers = trailers[1:]
values = context.infer_node(base)
from jedi.inference.syntax_tree import infer_trailer
for trailer in trailers:
values = infer_trailer(context, values, trailer)
return values
def get_names_of_node(node):
try:
children = node.children
except AttributeError:
if node.type == 'name':
return [node]
else:
return []
else:
return list(chain.from_iterable(get_names_of_node(c) for c in children))
def is_string(value):
return value.is_compiled() and isinstance(value.get_safe_value(default=None), str)
def is_literal(value):
return is_number(value) or is_string(value)
def _get_safe_value_or_none(value, accept):
value = value.get_safe_value(default=None)
if isinstance(value, accept):
return value
def get_int_or_none(value):
return _get_safe_value_or_none(value, int)
def get_str_or_none(value):
return _get_safe_value_or_none(value, str)
def is_number(value):
return _get_safe_value_or_none(value, (int, float)) is not None
class SimpleGetItemNotFound(Exception):
pass
@contextmanager
def reraise_getitem_errors(*exception_classes):
try:
yield
except exception_classes as e:
raise SimpleGetItemNotFound(e)
def parse_dotted_names(nodes, is_import_from, until_node=None):
level = 0
names = []
for node in nodes[1:]:
if node in ('.', '...'):
if not names:
level += len(node.value)
elif node.type == 'dotted_name':
for n in node.children[::2]:
names.append(n)
if n is until_node:
break
else:
continue
break
elif node.type == 'name':
names.append(node)
if node is until_node:
break
elif node == ',':
if not is_import_from:
names = []
else:
# Here if the keyword `import` comes along it stops checking
# for names.
break
return level, names
def values_from_qualified_names(inference_state, *names):
return inference_state.import_module(names[:-1]).py__getattribute__(names[-1])
def is_big_annoying_library(context):
string_names = context.get_root_context().string_names
if string_names is None:
return False
# Especially pandas and tensorflow are huge complicated Python libraries
# that get even slower than they already are when Jedi tries to undrstand
# dynamic features like decorators, ifs and other stuff.
return string_names[0] in ('pandas', 'numpy', 'tensorflow', 'matplotlib')