|
|
// distance between 2 points
|
|
|
function distance(p1, p2) {
|
|
|
return Math.sqrt(distanceSq(p1, p2));
|
|
|
}
|
|
|
// distance between 2 points squared
|
|
|
function distanceSq(p1, p2) {
|
|
|
return Math.pow(p1[0] - p2[0], 2) + Math.pow(p1[1] - p2[1], 2);
|
|
|
}
|
|
|
// Sistance squared from a point p to the line segment vw
|
|
|
function distanceToSegmentSq(p, v, w) {
|
|
|
const l2 = distanceSq(v, w);
|
|
|
if (l2 === 0) {
|
|
|
return distanceSq(p, v);
|
|
|
}
|
|
|
let t = ((p[0] - v[0]) * (w[0] - v[0]) + (p[1] - v[1]) * (w[1] - v[1])) / l2;
|
|
|
t = Math.max(0, Math.min(1, t));
|
|
|
return distanceSq(p, lerp(v, w, t));
|
|
|
}
|
|
|
function lerp(a, b, t) {
|
|
|
return [
|
|
|
a[0] + (b[0] - a[0]) * t,
|
|
|
a[1] + (b[1] - a[1]) * t,
|
|
|
];
|
|
|
}
|
|
|
// Adapted from https://seant23.wordpress.com/2010/11/12/offset-bezier-curves/
|
|
|
function flatness(points, offset) {
|
|
|
const p1 = points[offset + 0];
|
|
|
const p2 = points[offset + 1];
|
|
|
const p3 = points[offset + 2];
|
|
|
const p4 = points[offset + 3];
|
|
|
let ux = 3 * p2[0] - 2 * p1[0] - p4[0];
|
|
|
ux *= ux;
|
|
|
let uy = 3 * p2[1] - 2 * p1[1] - p4[1];
|
|
|
uy *= uy;
|
|
|
let vx = 3 * p3[0] - 2 * p4[0] - p1[0];
|
|
|
vx *= vx;
|
|
|
let vy = 3 * p3[1] - 2 * p4[1] - p1[1];
|
|
|
vy *= vy;
|
|
|
if (ux < vx) {
|
|
|
ux = vx;
|
|
|
}
|
|
|
if (uy < vy) {
|
|
|
uy = vy;
|
|
|
}
|
|
|
return ux + uy;
|
|
|
}
|
|
|
function getPointsOnBezierCurveWithSplitting(points, offset, tolerance, newPoints) {
|
|
|
const outPoints = newPoints || [];
|
|
|
if (flatness(points, offset) < tolerance) {
|
|
|
const p0 = points[offset + 0];
|
|
|
if (outPoints.length) {
|
|
|
const d = distance(outPoints[outPoints.length - 1], p0);
|
|
|
if (d > 1) {
|
|
|
outPoints.push(p0);
|
|
|
}
|
|
|
}
|
|
|
else {
|
|
|
outPoints.push(p0);
|
|
|
}
|
|
|
outPoints.push(points[offset + 3]);
|
|
|
}
|
|
|
else {
|
|
|
// subdivide
|
|
|
const t = .5;
|
|
|
const p1 = points[offset + 0];
|
|
|
const p2 = points[offset + 1];
|
|
|
const p3 = points[offset + 2];
|
|
|
const p4 = points[offset + 3];
|
|
|
const q1 = lerp(p1, p2, t);
|
|
|
const q2 = lerp(p2, p3, t);
|
|
|
const q3 = lerp(p3, p4, t);
|
|
|
const r1 = lerp(q1, q2, t);
|
|
|
const r2 = lerp(q2, q3, t);
|
|
|
const red = lerp(r1, r2, t);
|
|
|
getPointsOnBezierCurveWithSplitting([p1, q1, r1, red], 0, tolerance, outPoints);
|
|
|
getPointsOnBezierCurveWithSplitting([red, r2, q3, p4], 0, tolerance, outPoints);
|
|
|
}
|
|
|
return outPoints;
|
|
|
}
|
|
|
export function simplify(points, distance) {
|
|
|
return simplifyPoints(points, 0, points.length, distance);
|
|
|
}
|
|
|
// Ramer–Douglas–Peucker algorithm
|
|
|
// https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
|
|
|
function simplifyPoints(points, start, end, epsilon, newPoints) {
|
|
|
const outPoints = newPoints || [];
|
|
|
// find the most distance point from the endpoints
|
|
|
const s = points[start];
|
|
|
const e = points[end - 1];
|
|
|
let maxDistSq = 0;
|
|
|
let maxNdx = 1;
|
|
|
for (let i = start + 1; i < end - 1; ++i) {
|
|
|
const distSq = distanceToSegmentSq(points[i], s, e);
|
|
|
if (distSq > maxDistSq) {
|
|
|
maxDistSq = distSq;
|
|
|
maxNdx = i;
|
|
|
}
|
|
|
}
|
|
|
// if that point is too far, split
|
|
|
if (Math.sqrt(maxDistSq) > epsilon) {
|
|
|
simplifyPoints(points, start, maxNdx + 1, epsilon, outPoints);
|
|
|
simplifyPoints(points, maxNdx, end, epsilon, outPoints);
|
|
|
}
|
|
|
else {
|
|
|
if (!outPoints.length) {
|
|
|
outPoints.push(s);
|
|
|
}
|
|
|
outPoints.push(e);
|
|
|
}
|
|
|
return outPoints;
|
|
|
}
|
|
|
export function pointsOnBezierCurves(points, tolerance = 0.15, distance) {
|
|
|
const newPoints = [];
|
|
|
const numSegments = (points.length - 1) / 3;
|
|
|
for (let i = 0; i < numSegments; i++) {
|
|
|
const offset = i * 3;
|
|
|
getPointsOnBezierCurveWithSplitting(points, offset, tolerance, newPoints);
|
|
|
}
|
|
|
if (distance && distance > 0) {
|
|
|
return simplifyPoints(newPoints, 0, newPoints.length, distance);
|
|
|
}
|
|
|
return newPoints;
|
|
|
}
|