You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

124 lines
3.9 KiB
JavaScript

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

// distance between 2 points
function distance(p1, p2) {
return Math.sqrt(distanceSq(p1, p2));
}
// distance between 2 points squared
function distanceSq(p1, p2) {
return Math.pow(p1[0] - p2[0], 2) + Math.pow(p1[1] - p2[1], 2);
}
// Sistance squared from a point p to the line segment vw
function distanceToSegmentSq(p, v, w) {
const l2 = distanceSq(v, w);
if (l2 === 0) {
return distanceSq(p, v);
}
let t = ((p[0] - v[0]) * (w[0] - v[0]) + (p[1] - v[1]) * (w[1] - v[1])) / l2;
t = Math.max(0, Math.min(1, t));
return distanceSq(p, lerp(v, w, t));
}
function lerp(a, b, t) {
return [
a[0] + (b[0] - a[0]) * t,
a[1] + (b[1] - a[1]) * t,
];
}
// Adapted from https://seant23.wordpress.com/2010/11/12/offset-bezier-curves/
function flatness(points, offset) {
const p1 = points[offset + 0];
const p2 = points[offset + 1];
const p3 = points[offset + 2];
const p4 = points[offset + 3];
let ux = 3 * p2[0] - 2 * p1[0] - p4[0];
ux *= ux;
let uy = 3 * p2[1] - 2 * p1[1] - p4[1];
uy *= uy;
let vx = 3 * p3[0] - 2 * p4[0] - p1[0];
vx *= vx;
let vy = 3 * p3[1] - 2 * p4[1] - p1[1];
vy *= vy;
if (ux < vx) {
ux = vx;
}
if (uy < vy) {
uy = vy;
}
return ux + uy;
}
function getPointsOnBezierCurveWithSplitting(points, offset, tolerance, newPoints) {
const outPoints = newPoints || [];
if (flatness(points, offset) < tolerance) {
const p0 = points[offset + 0];
if (outPoints.length) {
const d = distance(outPoints[outPoints.length - 1], p0);
if (d > 1) {
outPoints.push(p0);
}
}
else {
outPoints.push(p0);
}
outPoints.push(points[offset + 3]);
}
else {
// subdivide
const t = .5;
const p1 = points[offset + 0];
const p2 = points[offset + 1];
const p3 = points[offset + 2];
const p4 = points[offset + 3];
const q1 = lerp(p1, p2, t);
const q2 = lerp(p2, p3, t);
const q3 = lerp(p3, p4, t);
const r1 = lerp(q1, q2, t);
const r2 = lerp(q2, q3, t);
const red = lerp(r1, r2, t);
getPointsOnBezierCurveWithSplitting([p1, q1, r1, red], 0, tolerance, outPoints);
getPointsOnBezierCurveWithSplitting([red, r2, q3, p4], 0, tolerance, outPoints);
}
return outPoints;
}
export function simplify(points, distance) {
return simplifyPoints(points, 0, points.length, distance);
}
// RamerDouglasPeucker algorithm
// https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
function simplifyPoints(points, start, end, epsilon, newPoints) {
const outPoints = newPoints || [];
// find the most distance point from the endpoints
const s = points[start];
const e = points[end - 1];
let maxDistSq = 0;
let maxNdx = 1;
for (let i = start + 1; i < end - 1; ++i) {
const distSq = distanceToSegmentSq(points[i], s, e);
if (distSq > maxDistSq) {
maxDistSq = distSq;
maxNdx = i;
}
}
// if that point is too far, split
if (Math.sqrt(maxDistSq) > epsilon) {
simplifyPoints(points, start, maxNdx + 1, epsilon, outPoints);
simplifyPoints(points, maxNdx, end, epsilon, outPoints);
}
else {
if (!outPoints.length) {
outPoints.push(s);
}
outPoints.push(e);
}
return outPoints;
}
export function pointsOnBezierCurves(points, tolerance = 0.15, distance) {
const newPoints = [];
const numSegments = (points.length - 1) / 3;
for (let i = 0; i < numSegments; i++) {
const offset = i * 3;
getPointsOnBezierCurveWithSplitting(points, offset, tolerance, newPoints);
}
if (distance && distance > 0) {
return simplifyPoints(newPoints, 0, newPoints.length, distance);
}
return newPoints;
}