// distance between 2 points function distance(p1, p2) { return Math.sqrt(distanceSq(p1, p2)); } // distance between 2 points squared function distanceSq(p1, p2) { return Math.pow(p1[0] - p2[0], 2) + Math.pow(p1[1] - p2[1], 2); } // Sistance squared from a point p to the line segment vw function distanceToSegmentSq(p, v, w) { const l2 = distanceSq(v, w); if (l2 === 0) { return distanceSq(p, v); } let t = ((p[0] - v[0]) * (w[0] - v[0]) + (p[1] - v[1]) * (w[1] - v[1])) / l2; t = Math.max(0, Math.min(1, t)); return distanceSq(p, lerp(v, w, t)); } function lerp(a, b, t) { return [ a[0] + (b[0] - a[0]) * t, a[1] + (b[1] - a[1]) * t, ]; } // Adapted from https://seant23.wordpress.com/2010/11/12/offset-bezier-curves/ function flatness(points, offset) { const p1 = points[offset + 0]; const p2 = points[offset + 1]; const p3 = points[offset + 2]; const p4 = points[offset + 3]; let ux = 3 * p2[0] - 2 * p1[0] - p4[0]; ux *= ux; let uy = 3 * p2[1] - 2 * p1[1] - p4[1]; uy *= uy; let vx = 3 * p3[0] - 2 * p4[0] - p1[0]; vx *= vx; let vy = 3 * p3[1] - 2 * p4[1] - p1[1]; vy *= vy; if (ux < vx) { ux = vx; } if (uy < vy) { uy = vy; } return ux + uy; } function getPointsOnBezierCurveWithSplitting(points, offset, tolerance, newPoints) { const outPoints = newPoints || []; if (flatness(points, offset) < tolerance) { const p0 = points[offset + 0]; if (outPoints.length) { const d = distance(outPoints[outPoints.length - 1], p0); if (d > 1) { outPoints.push(p0); } } else { outPoints.push(p0); } outPoints.push(points[offset + 3]); } else { // subdivide const t = .5; const p1 = points[offset + 0]; const p2 = points[offset + 1]; const p3 = points[offset + 2]; const p4 = points[offset + 3]; const q1 = lerp(p1, p2, t); const q2 = lerp(p2, p3, t); const q3 = lerp(p3, p4, t); const r1 = lerp(q1, q2, t); const r2 = lerp(q2, q3, t); const red = lerp(r1, r2, t); getPointsOnBezierCurveWithSplitting([p1, q1, r1, red], 0, tolerance, outPoints); getPointsOnBezierCurveWithSplitting([red, r2, q3, p4], 0, tolerance, outPoints); } return outPoints; } export function simplify(points, distance) { return simplifyPoints(points, 0, points.length, distance); } // Ramer–Douglas–Peucker algorithm // https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm function simplifyPoints(points, start, end, epsilon, newPoints) { const outPoints = newPoints || []; // find the most distance point from the endpoints const s = points[start]; const e = points[end - 1]; let maxDistSq = 0; let maxNdx = 1; for (let i = start + 1; i < end - 1; ++i) { const distSq = distanceToSegmentSq(points[i], s, e); if (distSq > maxDistSq) { maxDistSq = distSq; maxNdx = i; } } // if that point is too far, split if (Math.sqrt(maxDistSq) > epsilon) { simplifyPoints(points, start, maxNdx + 1, epsilon, outPoints); simplifyPoints(points, maxNdx, end, epsilon, outPoints); } else { if (!outPoints.length) { outPoints.push(s); } outPoints.push(e); } return outPoints; } export function pointsOnBezierCurves(points, tolerance = 0.15, distance) { const newPoints = []; const numSegments = (points.length - 1) / 3; for (let i = 0; i < numSegments; i++) { const offset = i * 3; getPointsOnBezierCurveWithSplitting(points, offset, tolerance, newPoints); } if (distance && distance > 0) { return simplifyPoints(newPoints, 0, newPoints.length, distance); } return newPoints; }