import os import warnings from dataset.database import Database from dataset.table import Table from dataset.util import row_type # shut up useless SA warning: warnings.filterwarnings( 'ignore', 'Unicode type received non-unicode bind param value.') warnings.filterwarnings( 'ignore', 'Skipping unsupported ALTER for creation of implicit constraint') __all__ = ['Database', 'Table', 'freeze', 'connect'] __version__ = '1.3.1' def connect(url=None, schema=None, reflect_metadata=True, engine_kwargs=None, reflect_views=True, ensure_schema=True, row_type=row_type): """ Opens a new connection to a database. *url* can be any valid `SQLAlchemy engine URL`_. If *url* is not defined it will try to use *DATABASE_URL* from environment variable. Returns an instance of :py:class:`Database `. Set *reflect_metadata* to False if you don't want the entire database schema to be pre-loaded. This significantly speeds up connecting to large databases with lots of tables. *reflect_views* can be set to False if you don't want views to be loaded. Additionally, *engine_kwargs* will be directly passed to SQLAlchemy, e.g. set *engine_kwargs={'pool_recycle': 3600}* will avoid `DB connection timeout`_. Set *row_type* to an alternate dict-like class to change the type of container rows are stored in.:: db = dataset.connect('sqlite:///factbook.db') One of the main features of `dataset` is to automatically create tables and columns as data is inserted. This behaviour can optionally be disabled via the `ensure_schema` argument. It can also be overridden in a lot of the data manipulation methods using the `ensure` flag. .. _SQLAlchemy Engine URL: http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine .. _DB connection timeout: http://docs.sqlalchemy.org/en/latest/core/pooling.html#setting-pool-recycle """ if url is None: url = os.environ.get('DATABASE_URL', 'sqlite://') return Database(url, schema=schema, reflect_metadata=reflect_metadata, engine_kwargs=engine_kwargs, reflect_views=reflect_views, ensure_schema=ensure_schema, row_type=row_type)