You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
720 lines
26 KiB
Python
720 lines
26 KiB
Python
5 years ago
|
import logging
|
||
|
import warnings
|
||
|
import threading
|
||
|
|
||
|
from sqlalchemy.sql import and_, expression
|
||
|
from sqlalchemy.sql.expression import bindparam, ClauseElement
|
||
|
from sqlalchemy.schema import Column, Index
|
||
|
from sqlalchemy import func, select, false
|
||
|
from sqlalchemy.schema import Table as SQLATable
|
||
|
from sqlalchemy.exc import NoSuchTableError
|
||
|
|
||
|
from dataset.types import Types
|
||
|
from dataset.util import index_name, ensure_tuple
|
||
|
from dataset.util import DatasetException, ResultIter, QUERY_STEP
|
||
|
from dataset.util import normalize_table_name, pad_chunk_columns
|
||
|
from dataset.util import normalize_column_name, normalize_column_key
|
||
|
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class Table(object):
|
||
|
"""Represents a table in a database and exposes common operations."""
|
||
|
PRIMARY_DEFAULT = 'id'
|
||
|
|
||
|
def __init__(self, database, table_name, primary_id=None,
|
||
|
primary_type=None, auto_create=False):
|
||
|
"""Initialise the table from database schema."""
|
||
|
self.db = database
|
||
|
self.name = normalize_table_name(table_name)
|
||
|
self._table = None
|
||
|
self._columns = None
|
||
|
self._indexes = []
|
||
|
self._primary_id = primary_id if primary_id is not None \
|
||
|
else self.PRIMARY_DEFAULT
|
||
|
self._primary_type = primary_type if primary_type is not None \
|
||
|
else Types.integer
|
||
|
self._auto_create = auto_create
|
||
|
|
||
|
@property
|
||
|
def exists(self):
|
||
|
"""Check to see if the table currently exists in the database."""
|
||
|
if self._table is not None:
|
||
|
return True
|
||
|
return self.name in self.db
|
||
|
|
||
|
@property
|
||
|
def table(self):
|
||
|
"""Get a reference to the table, which may be reflected or created."""
|
||
|
if self._table is None:
|
||
|
self._sync_table(())
|
||
|
return self._table
|
||
|
|
||
|
@property
|
||
|
def _column_keys(self):
|
||
|
"""Get a dictionary of all columns and their case mapping."""
|
||
|
if not self.exists:
|
||
|
return {}
|
||
|
with self.db.lock:
|
||
|
if self._columns is None:
|
||
|
# Initialise the table if it doesn't exist
|
||
|
table = self.table
|
||
|
self._columns = {}
|
||
|
for column in table.columns:
|
||
|
name = normalize_column_name(column.name)
|
||
|
key = normalize_column_key(name)
|
||
|
if key in self._columns:
|
||
|
log.warning("Duplicate column: %s", name)
|
||
|
self._columns[key] = name
|
||
|
return self._columns
|
||
|
|
||
|
def _flush_metadata(self):
|
||
|
with self.db.lock:
|
||
|
self._columns = None
|
||
|
|
||
|
@property
|
||
|
def columns(self):
|
||
|
"""Get a listing of all columns that exist in the table."""
|
||
|
return list(self._column_keys.values())
|
||
|
|
||
|
def has_column(self, column):
|
||
|
"""Check if a column with the given name exists on this table."""
|
||
|
key = normalize_column_key(normalize_column_name(column))
|
||
|
return key in self._column_keys
|
||
|
|
||
|
def _get_column_name(self, name):
|
||
|
"""Find the best column name with case-insensitive matching."""
|
||
|
name = normalize_column_name(name)
|
||
|
key = normalize_column_key(name)
|
||
|
return self._column_keys.get(key, name)
|
||
|
|
||
|
def insert(self, row, ensure=None, types=None):
|
||
|
"""Add a ``row`` dict by inserting it into the table.
|
||
|
|
||
|
If ``ensure`` is set, any of the keys of the row are not
|
||
|
table columns, they will be created automatically.
|
||
|
|
||
|
During column creation, ``types`` will be checked for a key
|
||
|
matching the name of a column to be created, and the given
|
||
|
SQLAlchemy column type will be used. Otherwise, the type is
|
||
|
guessed from the row value, defaulting to a simple unicode
|
||
|
field.
|
||
|
::
|
||
|
|
||
|
data = dict(title='I am a banana!')
|
||
|
table.insert(data)
|
||
|
|
||
|
Returns the inserted row's primary key.
|
||
|
"""
|
||
|
row = self._sync_columns(row, ensure, types=types)
|
||
|
res = self.db.executable.execute(self.table.insert(row))
|
||
|
if len(res.inserted_primary_key) > 0:
|
||
|
return res.inserted_primary_key[0]
|
||
|
return True
|
||
|
|
||
|
def insert_ignore(self, row, keys, ensure=None, types=None):
|
||
|
"""Add a ``row`` dict into the table if the row does not exist.
|
||
|
|
||
|
If rows with matching ``keys`` exist no change is made.
|
||
|
|
||
|
Setting ``ensure`` results in automatically creating missing columns,
|
||
|
i.e., keys of the row are not table columns.
|
||
|
|
||
|
During column creation, ``types`` will be checked for a key
|
||
|
matching the name of a column to be created, and the given
|
||
|
SQLAlchemy column type will be used. Otherwise, the type is
|
||
|
guessed from the row value, defaulting to a simple unicode
|
||
|
field.
|
||
|
::
|
||
|
|
||
|
data = dict(id=10, title='I am a banana!')
|
||
|
table.insert_ignore(data, ['id'])
|
||
|
"""
|
||
|
row = self._sync_columns(row, ensure, types=types)
|
||
|
if self._check_ensure(ensure):
|
||
|
self.create_index(keys)
|
||
|
args, _ = self._keys_to_args(row, keys)
|
||
|
if self.count(**args) == 0:
|
||
|
return self.insert(row, ensure=False)
|
||
|
return False
|
||
|
|
||
|
def insert_many(self, rows, chunk_size=1000, ensure=None, types=None):
|
||
|
"""Add many rows at a time.
|
||
|
|
||
|
This is significantly faster than adding them one by one. Per default
|
||
|
the rows are processed in chunks of 1000 per commit, unless you specify
|
||
|
a different ``chunk_size``.
|
||
|
|
||
|
See :py:meth:`insert() <dataset.Table.insert>` for details on
|
||
|
the other parameters.
|
||
|
::
|
||
|
|
||
|
rows = [dict(name='Dolly')] * 10000
|
||
|
table.insert_many(rows)
|
||
|
"""
|
||
|
# Sync table before inputting rows.
|
||
|
sync_row = {}
|
||
|
for row in rows:
|
||
|
# Only get non-existing columns.
|
||
|
sync_keys = list(sync_row.keys())
|
||
|
for key in [k for k in row.keys() if k not in sync_keys]:
|
||
|
# Get a sample of the new column(s) from the row.
|
||
|
sync_row[key] = row[key]
|
||
|
self._sync_columns(sync_row, ensure, types=types)
|
||
|
|
||
|
# Get columns name list to be used for padding later.
|
||
|
columns = sync_row.keys()
|
||
|
|
||
|
chunk = []
|
||
|
for index, row in enumerate(rows):
|
||
|
chunk.append(row)
|
||
|
|
||
|
# Insert when chunk_size is fulfilled or this is the last row
|
||
|
if len(chunk) == chunk_size or index == len(rows) - 1:
|
||
|
chunk = pad_chunk_columns(chunk, columns)
|
||
|
self.table.insert().execute(chunk)
|
||
|
chunk = []
|
||
|
|
||
|
def update(self, row, keys, ensure=None, types=None, return_count=False):
|
||
|
"""Update a row in the table.
|
||
|
|
||
|
The update is managed via the set of column names stated in ``keys``:
|
||
|
they will be used as filters for the data to be updated, using the
|
||
|
values in ``row``.
|
||
|
::
|
||
|
|
||
|
# update all entries with id matching 10, setting their title
|
||
|
# columns
|
||
|
data = dict(id=10, title='I am a banana!')
|
||
|
table.update(data, ['id'])
|
||
|
|
||
|
If keys in ``row`` update columns not present in the table, they will
|
||
|
be created based on the settings of ``ensure`` and ``types``, matching
|
||
|
the behavior of :py:meth:`insert() <dataset.Table.insert>`.
|
||
|
"""
|
||
|
row = self._sync_columns(row, ensure, types=types)
|
||
|
args, row = self._keys_to_args(row, keys)
|
||
|
clause = self._args_to_clause(args)
|
||
|
if not len(row):
|
||
|
return self.count(clause)
|
||
|
stmt = self.table.update(whereclause=clause, values=row)
|
||
|
rp = self.db.executable.execute(stmt)
|
||
|
if rp.supports_sane_rowcount():
|
||
|
return rp.rowcount
|
||
|
if return_count:
|
||
|
return self.count(clause)
|
||
|
|
||
|
def update_many(self, rows, keys, chunk_size=1000, ensure=None,
|
||
|
types=None):
|
||
|
"""Update many rows in the table at a time.
|
||
|
|
||
|
This is significantly faster than updating them one by one. Per default
|
||
|
the rows are processed in chunks of 1000 per commit, unless you specify
|
||
|
a different ``chunk_size``.
|
||
|
|
||
|
See :py:meth:`update() <dataset.Table.update>` for details on
|
||
|
the other parameters.
|
||
|
"""
|
||
|
# Convert keys to a list if not a list or tuple.
|
||
|
keys = keys if type(keys) in (list, tuple) else [keys]
|
||
|
|
||
|
chunk = []
|
||
|
columns = []
|
||
|
for index, row in enumerate(rows):
|
||
|
chunk.append(row)
|
||
|
for col in row.keys():
|
||
|
if col not in columns:
|
||
|
columns.append(col)
|
||
|
|
||
|
# bindparam requires names to not conflict (cannot be "id" for id)
|
||
|
for key in keys:
|
||
|
row['_%s' % key] = row[key]
|
||
|
|
||
|
# Update when chunk_size is fulfilled or this is the last row
|
||
|
if len(chunk) == chunk_size or index == len(rows) - 1:
|
||
|
cl = [self.table.c[k] == bindparam('_%s' % k) for k in keys]
|
||
|
stmt = self.table.update(
|
||
|
whereclause=and_(*cl),
|
||
|
values={
|
||
|
col: bindparam(col, required=False) for col in columns
|
||
|
}
|
||
|
)
|
||
|
self.db.executable.execute(stmt, chunk)
|
||
|
chunk = []
|
||
|
|
||
|
def upsert(self, row, keys, ensure=None, types=None):
|
||
|
"""An UPSERT is a smart combination of insert and update.
|
||
|
|
||
|
If rows with matching ``keys`` exist they will be updated, otherwise a
|
||
|
new row is inserted in the table.
|
||
|
::
|
||
|
|
||
|
data = dict(id=10, title='I am a banana!')
|
||
|
table.upsert(data, ['id'])
|
||
|
"""
|
||
|
row = self._sync_columns(row, ensure, types=types)
|
||
|
if self._check_ensure(ensure):
|
||
|
self.create_index(keys)
|
||
|
row_count = self.update(row, keys, ensure=False, return_count=True)
|
||
|
if row_count == 0:
|
||
|
return self.insert(row, ensure=False)
|
||
|
return True
|
||
|
|
||
|
def upsert_many(self, rows, keys, chunk_size=1000, ensure=None,
|
||
|
types=None):
|
||
|
"""
|
||
|
Sorts multiple input rows into upserts and inserts. Inserts are passed
|
||
|
to insert_many and upserts are updated.
|
||
|
|
||
|
See :py:meth:`upsert() <dataset.Table.upsert>` and
|
||
|
:py:meth:`insert_many() <dataset.Table.insert_many>`.
|
||
|
"""
|
||
|
# Convert keys to a list if not a list or tuple.
|
||
|
keys = keys if type(keys) in (list, tuple) else [keys]
|
||
|
|
||
|
to_insert = []
|
||
|
to_update = []
|
||
|
for row in rows:
|
||
|
if self.find_one(**{key: row.get(key) for key in keys}):
|
||
|
# Row exists - update it.
|
||
|
to_update.append(row)
|
||
|
else:
|
||
|
# Row doesn't exist - insert it.
|
||
|
to_insert.append(row)
|
||
|
|
||
|
# Insert non-existing rows.
|
||
|
self.insert_many(to_insert, chunk_size, ensure, types)
|
||
|
|
||
|
# Update existing rows.
|
||
|
self.update_many(to_update, keys, chunk_size, ensure, types)
|
||
|
|
||
|
def delete(self, *clauses, **filters):
|
||
|
"""Delete rows from the table.
|
||
|
|
||
|
Keyword arguments can be used to add column-based filters. The filter
|
||
|
criterion will always be equality:
|
||
|
::
|
||
|
|
||
|
table.delete(place='Berlin')
|
||
|
|
||
|
If no arguments are given, all records are deleted.
|
||
|
"""
|
||
|
if not self.exists:
|
||
|
return False
|
||
|
clause = self._args_to_clause(filters, clauses=clauses)
|
||
|
stmt = self.table.delete(whereclause=clause)
|
||
|
rp = self.db.executable.execute(stmt)
|
||
|
return rp.rowcount > 0
|
||
|
|
||
|
def _reflect_table(self):
|
||
|
"""Load the tables definition from the database."""
|
||
|
with self.db.lock:
|
||
|
self._flush_metadata()
|
||
|
try:
|
||
|
self._table = SQLATable(self.name,
|
||
|
self.db.metadata,
|
||
|
schema=self.db.schema,
|
||
|
autoload=True)
|
||
|
except NoSuchTableError:
|
||
|
self._table = None
|
||
|
|
||
|
def _threading_warn(self):
|
||
|
if self.db.in_transaction and threading.active_count() > 1:
|
||
|
warnings.warn("Changing the database schema inside a transaction "
|
||
|
"in a multi-threaded environment is likely to lead "
|
||
|
"to race conditions and synchronization issues.",
|
||
|
RuntimeWarning)
|
||
|
|
||
|
def _sync_table(self, columns):
|
||
|
"""Lazy load, create or adapt the table structure in the database."""
|
||
|
self._flush_metadata()
|
||
|
if self._table is None:
|
||
|
# Load an existing table from the database.
|
||
|
self._reflect_table()
|
||
|
if self._table is None:
|
||
|
# Create the table with an initial set of columns.
|
||
|
if not self._auto_create:
|
||
|
raise DatasetException("Table does not exist: %s" % self.name)
|
||
|
# Keep the lock scope small because this is run very often.
|
||
|
with self.db.lock:
|
||
|
self._threading_warn()
|
||
|
self._table = SQLATable(self.name,
|
||
|
self.db.metadata,
|
||
|
schema=self.db.schema)
|
||
|
if self._primary_id is not False:
|
||
|
# This can go wrong on DBMS like MySQL and SQLite where
|
||
|
# tables cannot have no columns.
|
||
|
primary_id = self._primary_id
|
||
|
primary_type = self._primary_type
|
||
|
increment = primary_type in [Types.integer, Types.bigint]
|
||
|
column = Column(primary_id, primary_type,
|
||
|
primary_key=True,
|
||
|
autoincrement=increment)
|
||
|
self._table.append_column(column)
|
||
|
for column in columns:
|
||
|
if not column.name == self._primary_id:
|
||
|
self._table.append_column(column)
|
||
|
self._table.create(self.db.executable, checkfirst=True)
|
||
|
elif len(columns):
|
||
|
with self.db.lock:
|
||
|
self._reflect_table()
|
||
|
self._threading_warn()
|
||
|
for column in columns:
|
||
|
if not self.has_column(column.name):
|
||
|
self.db.op.add_column(self.name,
|
||
|
column,
|
||
|
self.db.schema)
|
||
|
self._reflect_table()
|
||
|
|
||
|
def _sync_columns(self, row, ensure, types=None):
|
||
|
"""Create missing columns (or the table) prior to writes.
|
||
|
|
||
|
If automatic schema generation is disabled (``ensure`` is ``False``),
|
||
|
this will remove any keys from the ``row`` for which there is no
|
||
|
matching column.
|
||
|
"""
|
||
|
ensure = self._check_ensure(ensure)
|
||
|
types = types or {}
|
||
|
types = {self._get_column_name(k): v for (k, v) in types.items()}
|
||
|
out = {}
|
||
|
sync_columns = {}
|
||
|
for name, value in row.items():
|
||
|
name = self._get_column_name(name)
|
||
|
if self.has_column(name):
|
||
|
out[name] = value
|
||
|
elif ensure:
|
||
|
_type = types.get(name)
|
||
|
if _type is None:
|
||
|
_type = self.db.types.guess(value)
|
||
|
sync_columns[name] = Column(name, _type)
|
||
|
out[name] = value
|
||
|
self._sync_table(sync_columns.values())
|
||
|
return out
|
||
|
|
||
|
def _check_ensure(self, ensure):
|
||
|
if ensure is None:
|
||
|
return self.db.ensure_schema
|
||
|
return ensure
|
||
|
|
||
|
def _generate_clause(self, column, op, value):
|
||
|
if op in ('like',):
|
||
|
return self.table.c[column].like(value)
|
||
|
if op in ('ilike',):
|
||
|
return self.table.c[column].ilike(value)
|
||
|
if op in ('>', 'gt'):
|
||
|
return self.table.c[column] > value
|
||
|
if op in ('<', 'lt'):
|
||
|
return self.table.c[column] < value
|
||
|
if op in ('>=', 'gte'):
|
||
|
return self.table.c[column] >= value
|
||
|
if op in ('<=', 'lte'):
|
||
|
return self.table.c[column] <= value
|
||
|
if op in ('=', '==', 'is'):
|
||
|
return self.table.c[column] == value
|
||
|
if op in ('!=', '<>', 'not'):
|
||
|
return self.table.c[column] != value
|
||
|
if op in ('in'):
|
||
|
return self.table.c[column].in_(value)
|
||
|
if op in ('between', '..'):
|
||
|
start, end = value
|
||
|
return self.table.c[column].between(start, end)
|
||
|
if op in ('startswith',):
|
||
|
return self.table.c[column].like('%' + value)
|
||
|
if op in ('endswith',):
|
||
|
return self.table.c[column].like(value + '%')
|
||
|
return false()
|
||
|
|
||
|
def _args_to_clause(self, args, clauses=()):
|
||
|
clauses = list(clauses)
|
||
|
for column, value in args.items():
|
||
|
column = self._get_column_name(column)
|
||
|
if not self.has_column(column):
|
||
|
clauses.append(false())
|
||
|
elif isinstance(value, (list, tuple, set)):
|
||
|
clauses.append(self._generate_clause(column, 'in', value))
|
||
|
elif isinstance(value, dict):
|
||
|
for op, op_value in value.items():
|
||
|
clauses.append(self._generate_clause(column, op, op_value))
|
||
|
else:
|
||
|
clauses.append(self._generate_clause(column, '=', value))
|
||
|
return and_(*clauses)
|
||
|
|
||
|
def _args_to_order_by(self, order_by):
|
||
|
orderings = []
|
||
|
for ordering in ensure_tuple(order_by):
|
||
|
if ordering is None:
|
||
|
continue
|
||
|
column = ordering.lstrip('-')
|
||
|
column = self._get_column_name(column)
|
||
|
if not self.has_column(column):
|
||
|
continue
|
||
|
if ordering.startswith('-'):
|
||
|
orderings.append(self.table.c[column].desc())
|
||
|
else:
|
||
|
orderings.append(self.table.c[column].asc())
|
||
|
return orderings
|
||
|
|
||
|
def _keys_to_args(self, row, keys):
|
||
|
keys = ensure_tuple(keys)
|
||
|
keys = [self._get_column_name(k) for k in keys]
|
||
|
row = row.copy()
|
||
|
args = {k: row.pop(k, None) for k in keys}
|
||
|
return args, row
|
||
|
|
||
|
def create_column(self, name, type, **kwargs):
|
||
|
"""Create a new column ``name`` of a specified type.
|
||
|
::
|
||
|
|
||
|
table.create_column('created_at', db.types.datetime)
|
||
|
|
||
|
`type` corresponds to an SQLAlchemy type as described by
|
||
|
`dataset.db.Types`. Additional keyword arguments are passed
|
||
|
to the constructor of `Column`, so that default values, and
|
||
|
options like `nullable` and `unique` can be set.
|
||
|
::
|
||
|
|
||
|
table.create_column('key', unique=True, nullable=False)
|
||
|
table.create_column('food', default='banana')
|
||
|
"""
|
||
|
name = self._get_column_name(name)
|
||
|
if self.has_column(name):
|
||
|
log.debug("Column exists: %s" % name)
|
||
|
return
|
||
|
self._sync_table((Column(name, type, **kwargs),))
|
||
|
|
||
|
def create_column_by_example(self, name, value):
|
||
|
"""
|
||
|
Explicitly create a new column ``name`` with a type that is appropriate
|
||
|
to store the given example ``value``. The type is guessed in the same
|
||
|
way as for the insert method with ``ensure=True``.
|
||
|
::
|
||
|
|
||
|
table.create_column_by_example('length', 4.2)
|
||
|
|
||
|
If a column of the same name already exists, no action is taken, even
|
||
|
if it is not of the type we would have created.
|
||
|
"""
|
||
|
type_ = self.db.types.guess(value)
|
||
|
self.create_column(name, type_)
|
||
|
|
||
|
def drop_column(self, name):
|
||
|
"""Drop the column ``name``.
|
||
|
::
|
||
|
table.drop_column('created_at')
|
||
|
"""
|
||
|
if self.db.engine.dialect.name == 'sqlite':
|
||
|
raise RuntimeError("SQLite does not support dropping columns.")
|
||
|
name = self._get_column_name(name)
|
||
|
with self.db.lock:
|
||
|
if not self.exists or not self.has_column(name):
|
||
|
log.debug("Column does not exist: %s", name)
|
||
|
return
|
||
|
|
||
|
self._threading_warn()
|
||
|
self.db.op.drop_column(
|
||
|
self.table.name,
|
||
|
name,
|
||
|
self.table.schema
|
||
|
)
|
||
|
self._reflect_table()
|
||
|
|
||
|
def drop(self):
|
||
|
"""Drop the table from the database.
|
||
|
|
||
|
Deletes both the schema and all the contents within it.
|
||
|
"""
|
||
|
with self.db.lock:
|
||
|
if self.exists:
|
||
|
self._threading_warn()
|
||
|
self.table.drop(self.db.executable, checkfirst=True)
|
||
|
self._table = None
|
||
|
self._flush_metadata()
|
||
|
|
||
|
def has_index(self, columns):
|
||
|
"""Check if an index exists to cover the given ``columns``."""
|
||
|
if not self.exists:
|
||
|
return False
|
||
|
columns = set([self._get_column_name(c) for c in columns])
|
||
|
if columns in self._indexes:
|
||
|
return True
|
||
|
for column in columns:
|
||
|
if not self.has_column(column):
|
||
|
return False
|
||
|
indexes = self.db.inspect.get_indexes(self.name, schema=self.db.schema)
|
||
|
for index in indexes:
|
||
|
if columns == set(index.get('column_names', [])):
|
||
|
self._indexes.append(columns)
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
def create_index(self, columns, name=None, **kw):
|
||
|
"""Create an index to speed up queries on a table.
|
||
|
|
||
|
If no ``name`` is given a random name is created.
|
||
|
::
|
||
|
|
||
|
table.create_index(['name', 'country'])
|
||
|
"""
|
||
|
columns = [self._get_column_name(c) for c in ensure_tuple(columns)]
|
||
|
with self.db.lock:
|
||
|
if not self.exists:
|
||
|
raise DatasetException("Table has not been created yet.")
|
||
|
|
||
|
for column in columns:
|
||
|
if not self.has_column(column):
|
||
|
return
|
||
|
|
||
|
if not self.has_index(columns):
|
||
|
self._threading_warn()
|
||
|
name = name or index_name(self.name, columns)
|
||
|
columns = [self.table.c[c] for c in columns]
|
||
|
idx = Index(name, *columns, **kw)
|
||
|
idx.create(self.db.executable)
|
||
|
|
||
|
def find(self, *_clauses, **kwargs):
|
||
|
"""Perform a simple search on the table.
|
||
|
|
||
|
Simply pass keyword arguments as ``filter``.
|
||
|
::
|
||
|
|
||
|
results = table.find(country='France')
|
||
|
results = table.find(country='France', year=1980)
|
||
|
|
||
|
Using ``_limit``::
|
||
|
|
||
|
# just return the first 10 rows
|
||
|
results = table.find(country='France', _limit=10)
|
||
|
|
||
|
You can sort the results by single or multiple columns. Append a minus
|
||
|
sign to the column name for descending order::
|
||
|
|
||
|
# sort results by a column 'year'
|
||
|
results = table.find(country='France', order_by='year')
|
||
|
# return all rows sorted by multiple columns (descending by year)
|
||
|
results = table.find(order_by=['country', '-year'])
|
||
|
|
||
|
To perform complex queries with advanced filters or to perform
|
||
|
aggregation, use :py:meth:`db.query() <dataset.Database.query>`
|
||
|
instead.
|
||
|
"""
|
||
|
if not self.exists:
|
||
|
return iter([])
|
||
|
|
||
|
_limit = kwargs.pop('_limit', None)
|
||
|
_offset = kwargs.pop('_offset', 0)
|
||
|
order_by = kwargs.pop('order_by', None)
|
||
|
_streamed = kwargs.pop('_streamed', False)
|
||
|
_step = kwargs.pop('_step', QUERY_STEP)
|
||
|
if _step is False or _step == 0:
|
||
|
_step = None
|
||
|
|
||
|
order_by = self._args_to_order_by(order_by)
|
||
|
args = self._args_to_clause(kwargs, clauses=_clauses)
|
||
|
query = self.table.select(whereclause=args,
|
||
|
limit=_limit,
|
||
|
offset=_offset)
|
||
|
if len(order_by):
|
||
|
query = query.order_by(*order_by)
|
||
|
|
||
|
conn = self.db.executable
|
||
|
if _streamed:
|
||
|
conn = self.db.engine.connect()
|
||
|
conn = conn.execution_options(stream_results=True)
|
||
|
|
||
|
return ResultIter(conn.execute(query),
|
||
|
row_type=self.db.row_type,
|
||
|
step=_step)
|
||
|
|
||
|
def find_one(self, *args, **kwargs):
|
||
|
"""Get a single result from the table.
|
||
|
|
||
|
Works just like :py:meth:`find() <dataset.Table.find>` but returns one
|
||
|
result, or ``None``.
|
||
|
::
|
||
|
|
||
|
row = table.find_one(country='United States')
|
||
|
"""
|
||
|
if not self.exists:
|
||
|
return None
|
||
|
|
||
|
kwargs['_limit'] = 1
|
||
|
kwargs['_step'] = None
|
||
|
resiter = self.find(*args, **kwargs)
|
||
|
try:
|
||
|
for row in resiter:
|
||
|
return row
|
||
|
finally:
|
||
|
resiter.close()
|
||
|
|
||
|
def count(self, *_clauses, **kwargs):
|
||
|
"""Return the count of results for the given filter set."""
|
||
|
# NOTE: this does not have support for limit and offset since I can't
|
||
|
# see how this is useful. Still, there might be compatibility issues
|
||
|
# with people using these flags. Let's see how it goes.
|
||
|
if not self.exists:
|
||
|
return 0
|
||
|
|
||
|
args = self._args_to_clause(kwargs, clauses=_clauses)
|
||
|
query = select([func.count()], whereclause=args)
|
||
|
query = query.select_from(self.table)
|
||
|
rp = self.db.executable.execute(query)
|
||
|
return rp.fetchone()[0]
|
||
|
|
||
|
def __len__(self):
|
||
|
"""Return the number of rows in the table."""
|
||
|
return self.count()
|
||
|
|
||
|
def distinct(self, *args, **_filter):
|
||
|
"""Return all the unique (distinct) values for the given ``columns``.
|
||
|
::
|
||
|
|
||
|
# returns only one row per year, ignoring the rest
|
||
|
table.distinct('year')
|
||
|
# works with multiple columns, too
|
||
|
table.distinct('year', 'country')
|
||
|
# you can also combine this with a filter
|
||
|
table.distinct('year', country='China')
|
||
|
"""
|
||
|
if not self.exists:
|
||
|
return iter([])
|
||
|
|
||
|
columns = []
|
||
|
clauses = []
|
||
|
for column in args:
|
||
|
if isinstance(column, ClauseElement):
|
||
|
clauses.append(column)
|
||
|
else:
|
||
|
if not self.has_column(column):
|
||
|
raise DatasetException("No such column: %s" % column)
|
||
|
columns.append(self.table.c[column])
|
||
|
|
||
|
clause = self._args_to_clause(_filter, clauses=clauses)
|
||
|
if not len(columns):
|
||
|
return iter([])
|
||
|
|
||
|
q = expression.select(columns,
|
||
|
distinct=True,
|
||
|
whereclause=clause,
|
||
|
order_by=[c.asc() for c in columns])
|
||
|
return self.db.query(q)
|
||
|
|
||
|
# Legacy methods for running find queries.
|
||
|
all = find
|
||
|
|
||
|
def __iter__(self):
|
||
|
"""Return all rows of the table as simple dictionaries.
|
||
|
|
||
|
Allows for iterating over all rows in the table without explicetly
|
||
|
calling :py:meth:`find() <dataset.Table.find>`.
|
||
|
::
|
||
|
|
||
|
for row in table:
|
||
|
print(row)
|
||
|
"""
|
||
|
return self.find()
|
||
|
|
||
|
def __repr__(self):
|
||
|
"""Get table representation."""
|
||
|
return '<Table(%s)>' % self.table.name
|