& e
RETURN

/61'tarnadiv/ README

experimental readme file

a style of document that
introduces poetry and
programming hand in
hand.

document author:
onebigear

production time:
2022.02.10

disk information
author: bpNichol

production year:
1983 - 1984

platform: Apple lle
language: Apple BASIC
content: computer poems

edition: 100 numbered
and signed copies
distributed on 5.25"
floppies along with printed
matter.

remark: the yellow box
contains manuscript
versions, given to the
MAL by Lionel Kearns, a
poet and a friend of
bpNichol.

LIST
RUN

CATALOG

ALT README
L bpNichol

You are reading this alternative” README” placed next to the
Apple lle computer. In the yellow box next to the computer labeled
as “bpNichol”, there are multiple floppy disks containing the
computer poems written by the eponymous poet. This short
document is written for sharing, navigation and appreciation. | will
share how | read the poems, understood the source program, and
appreciated the works. This is written out of my endeavor to apply
the methods of “critical code studies” to the lab. Itis a
methodology, a theory, and a doing that understands code as
contextual. Poetry is for everyone, you don’t need to know all
about CCS to like computer poetry. This document intends to
introduce computer poems in a playful and accessible manner.

DISKS

For transparency, | did have introductory knowledge of computer
programming, and the lab manager, libi, demonstrated to me how
to use the computer, load disk, and use commands. After that |
fuzzed around and referred to the manuals in the lab for help.

Commands and methods

You need to load BASIC into the computer so that it can
understand BASIC. You can find the DOS 3.3 system disk nearby
the Apple lle. Insert the disk into the disk drive before turning up
the computer. Take out the disk after the system is loaded, and
insert any disks titled as “First Screening” from the yellow box.

Use the CATALOG command to show the working directory.
There is a HELLO program. It’s just there.

Use the RUN command to run the program:
RUN FIRST SCREENING.

Use the LIST command to read the source program. The syntax
is: LIST <line number 1> <line number 2>, for example LIST 1 -
100 to display line 1 to 100. So that the interface is not displaying
an overflow of text and you can examine selected sections of
code.

Depending on which copy you picked, the line numbers might not
be exactly the same as | am referring to them as follows. By using
the LIST command, | made a chart that specifies what sections of
the code responds to which poem. We are looking at one program
that contains multiple computer poems.




GOSUB &
RETURN

P T TR W
W AL
Al 1S

b A raud
IR comnm

‘Ilustration of the stack

GOSUB 300 -> ISLAND

GOSUB 360 -> SELF REFLEXIVE NO.1
GOSUB 430 -> SELF REFLEXIVE NO.2
GOSUB 500 -> TIDAL POOL

GOSUB 550 -> Dedication (not poem)
GOSUB 1000 -> CONSTRUCTION ONE

| felt that GOSUB is arguably the most important structural
command in the poemgram. Yes this is a portmanteau that | made
up, referring to computer programs that are poetic and poems that
are computational at the same time.

The C-64 Wiki offers a concise description:

The BASIC command GOSUB jumps to a subroutine at the
indicated line number. This call is placed onto the stack. The
subroutine finalizes using a RETURN command. Program
execution continues at the command following the initial GOSUB
command.

The Petit Computer Wiki offers a more elaborate description. You
don’t need to read the entirety of the documentation to understand
what the command is doing, although the theory behind it is
fascinating.

GOSUB and RETURN are commands which allow use of
subroutines in Petit Computer BASIC.

GOSUB must be followed by a label. When a GOSUB is
encountered while running the program, that point in the program
is pushed onto a 'call stack’, then execution of the program
continues from the label (like GOTO). When a RETURN is
encountered, the last value added to the 'call stack' is removed,
and execution continues from that point again (i.e. the location of
the corresponding GOSUB).

Essentially, the idea is that you can create a small program (a
"subroutine"), put a label at the beginning of it, and put RETURN at
the end of it. You can execute this subroutine by using GOSUB
with that label. If you have a task that needs to be performed many
times, this can save a lot of typing and make your code more
robust to change. Even if a section of code is used only once,
using subroutines to separate different tasks can help make your
program tidy and more easily understood and maintained.

The 'call stack' has a maximum depth of 255. This means that from

" [the start of the program you can run 255 consecutive GOSUBs, but

the next one will generate an Out of memory error. If the system
encounters a RETURN when the call stack is empty, it generates a
RETURN without GOSUB error.




The GOSUB stack memory is shared with the FOR stack
memory... so, if the very start of a program is a FOR loop, you can
only run 254 consecutive GOSUBs within that loop before getting
an Out of memory error. Any additions to the FOR stack made in a
subroutine, that are not removed in the normal way by the
execution of a NEXT ending the loop, are removed by the
RETURN. So, a single RETURN can free up two or more spaces
in the stack memory. In contrast, additions to the call stack made
during a FOR loop are not removed by a NEXT.

lllustration of the stack while the poemgrams are running




RORMGRAM 1:

ritical
age
ritique

gode

nippet

300 HOME

301 FORPAUSE=1TO
P000: NEXT

304 VTAB 8: HTAB 18:
PRINT " "

305 VTAB 10: HTAB 18:
PRINT "ISLAND"

306 VTAB 11: HTAB 18:
PRINT " "

310 FOR PAUSE=1TO
1000: NEXT

315 HOME

320 FORPAUSE=1TO
1200: NEXT

325 FORH=1T0O 120
330 PRINT " WAVE
WAVE WAVE" "ROCK
WAVE WAVE WAVE","

' "ROCK"

335 NEXTH

340 HOME

345 FORPAUSE=1TO
1000: NEXT

350 RETURN

oemgrain
atic
ntology

As specified in the chart, you can use the GOSUB command to
directly jump to the poem. | guess that when bpNichol worked on
the disk, he imagined that as the poems play, it's like a screening.
With GOSUB we as readers are interactive, afforded to jump to
sections that we select. Although, this is not like flipping through
book pages, as we can only GOSUB to the sections that are
marked with GOSUB and end with RETURN. I've read the thesis of
Katherine Wooler and found out the handy usage of GOSUB. |
found out about Katerine Wooler's master thesis through the blog
of Lori Emerson, the director of the Media Archaeology Lab. The
blog posts and Katherine Wooler’s thesis are linked in the
appendix in the end of this document.

Page 97 of INSTANT BASIC gives a good explanation of the FOR
NEXT loops.

To take a closer look at inside the for loop between line 325 and
335.

You may also want to refer to page 10 to 12 on the particularities of
the PRINT statement in BASIC, as the use of commas and
semicolons will produce different print layouts.

| have to use this phrase "poemgramatic ontology", if you are going
to read through this document you have to bear with me remixing
techno-philosophy into computer poems. The “ontology of the
poemgram” provides me a thinking framework, through which the
relationships between the poetic and the computational qualities of
the writing emerge and unify, into the “poemgrammatic”!

Please experience bpNichol’s poetry outside of his computer
poems. For example The Alphabet Game: A bpNichol Reader.
After reading bpNichol’s poems addressing directly the paper and
typography as the media and the interface, one may see how the
computer poems continue to embody a concern, a sensitive eye for
the media and the interface.

The poemgram makes a simple and creative use of the for loop
logical structure. The for loop is one of the first things to encounter
while learning programming, maybe bpNichol thought of the
creative use of for loop when he learned BASIC? The for loop of
120 iterations produces the flowing “WAVE”. {insert what the rock
statement is doing}

Logic wise, it's not all that different from the one above: for loop,
empty spaces and all.




File Not Found,
a BASIC Poem
for Ron Padgett

10 PRINT "Nothing in that
drawer."

20FOR1=0TO 999

30 NEXT |

40 GOTO 10

POEMGRAM
4: TIDAL
POOL

POEMGRAM

9:
CONSTRUCT
ION ONE

1015
1018
2500:
1020
1025
1030
1035
1040
1200:
1045
1050
1150:
1055
1060
1100:
1065

HOME

FORPAUSE =1TO
NEXT
FORF=1TO 24
PRINT " "

NEXT F

PRINT " ","TOWER"
FORPAUSE =1TO
NEXT

GOSUB 1520
FORPAUSE =1TO
NEXT

GOSUB 1520
FORPAUSE =1TO
NEXT

GOSUB 1520

1520

PRINT " ","TOWER"

The poemgram reminds me of File Not Found, a BASIC Poem for
Ron Padgett. It is written by the computational artist Nick Montfort
and he discussed it in A Platform Poetics: Computational Art,
Material and Formal Specificities, and 101 BASIC Poems (2013-).
Let’s read the poem, understand the structure, and dwell into the
similarities and uniqueness of the poemgrams.

You can look for how Nick interpreted the poem in his own words
in the article. It can be found in issue 1 of the digital review
(published on the internet). He is saying that, as the poemgram
loops through the print statement, it is referring to a different
drawer at each time. And as each drawer is pulled, nothing can be
found in that drawer, and the poemgram keeps on looping, until
the 999th time.

SELF REFLEXIVE NO.2 also makes use of the for loop, but the
attention is not at the drawer, but at the bottom line of the screen.
Similar to the command interfaces we use today, a new print
statement will appear at the bottom of an old one. Both
poemgrams reflect the computer screen as a space. One leads us
to understand the computer screen to a wall of 999, empty
drawers; and the other one leads us to the bottom where change is
persistent. While both poems both use a for loop structure, they
taste different, if you take a bit of time to “taste” them you will be
sure what sentiments | am referring to.

TIDAL POOL is an inverse of THE ISLAND, or, a “relative motion”
to THE ISLAND. Can you imagine how it is implemented?

This is my favorite one. Not that it is my favorite poemgram from
the disk, but my favorite interpretation, because it used the
GOSUB command extensively. The poemgram uses more lines
than the ones before. From line 1040 to line 1065, the poemgram
is taking shorter and shorter pauses to call GOSUB 1520. The
statement in line 1520 is to print the word "TOWER".
Poemgramatically, GOSUB has advantages over using a print
statement each time. Can we think of other ways to write this
section of the poemgram with less lines? Hint: decreasing
intervals.






