
torn at the seams: considering digital
vernacular

Michael Murtaugh

Processing is a free, open source programming language and
environment used by students, artists, designers, architects,
researchers and hobbyists for learning, prototyping, and
production. Processing is developed by artists and designers as
an alternative to proprietary software tools in the same domain.
The project integrates a programming language, development
environment, and teaching methodology into a unified structure
for learning and exploration.1

Teaching programming with free software to media design students for
years, I’ve resisted Processing as it has always seemed to me to embody
a particular kind of solipsism of digital interactivity and graphics that I
want my students to avoid.

design by numbers

In the fall of 1996, John Maeda joined the MIT Media Lab to replace the
recently deceased Muriel Cooper. Cooper was the first art director of the
MIT Press, producing influential designs such as a 1969 catalog of the
Bauhaus and the iconic MIT Press logo, a Bauhaus-inspired stylized
graphical rendering of the letters “mitp”. Cooper started the Visible
Language Workshop, later one of the founding groups of the MIT Media
Lab, to research the intersection of publishing, design, and computation.

1 Casey Reas and Ben Fry, Processing: A Programming Handbook for
Visual Designers and Artists (Cambridge: MIT Press, 2007), xxi-xxii.

Our forefathers at the Bauhaus, Ulm, and many other key centers
for design education around the world labored to create a sense
of order and method to their teaching. Thanks to their
trailblazing work, teaching at the university level gradually
became accepted as a meaningful and constructive activity. A
drawing board, small or large, became the stage for paper, pen,
ink, and blade to interact in the disciplined activity that
characterized the profession of visual design.2

Maeda created the Aesthetics and Computation group in part to continue
Cooper’s research. Maeda developed (with students Tom White, Peter
Cho, Ben Fry, and later Casey Reas among others) a software system
called Design by Numbers3. It had extreme constraints such as a fixed
100 by 100 pixel size and monochrome-only graphics. The command set
is similarly constrained with for instance only two drawing commands for
lines and points. The accompanying print publication also had a square
format. In the book’s introduction, Maeda links his project to the
pedagogic heritage of the Bauhaus school. In the DBN programming
language commands like “paper” and “pen”, controlling the gray value of
background and foreground colors, invoke the materialty of a (pre-
digital) print practice.

When designing this system for learning basic computational
media design, I intentionally limited the set of commands and
constructs to a minimal number of possibilities. If I had given you
drawing capability beyond a line or setting a dot, the examples
could have been more exciting, but the point could not be made
clearly because your attention would be drawn to the picture and
not to the code.[^dbn_144]

2 John Maeda, Design By Numbers. (Cambridge: MIT Press, 1999), 19.

3 https://dbn.media.mit.edu/

https://dbn.media.mit.edu/

In another spread a digital image of a vase is presented along with its
“code” consisting of a sequence of “set” statements describing the image
pixel by pixel. Though it’s possible that such an image might be created
in this way (discipline!) in practice such images are created by
translating a digital photograph using techniques such as “dithering” to
produce pixelated image with limited gray values. Here these tools and
techniques are unmentioned, with (expansive) space given instead to the
listing of numbers.4

Similar to the fields of 1s and 0s still popular as backgrounds of book
sleeves and powerpoint slides to suggest “all things digital”, the
presentation is gratuitous and misleading in terms of actual practice.
Like an observer unfamiliar with deaf culture confusing the hand
gestures of finger spelling with the fullness of actual sign language, 1s
and 0s display a form of digital alphabet rather than presenting
communication of a practice. [Alphabets are discrete collections of
symbols from which language is formed. Language is used to
communicate between a speaker and a listener in a context and with
meaning. Alphabets could be said to be unambiguous, where language is
typically not.]

(Code is the essential thing)

4 I remember sitting with a friend in the 1980s typing lines and lines of
“poke” commands with digital data from the pages of creative home
computer magazines into a commodore 64 to produce simple games.
These pages would typically use a compact representations (like
hexadecimal) and include things like “checksums” and bootstrap
programs to actually help you correctly enter and verify the data you
entered. In DBN, the purpose does not seem to be for someone to
actually type the numbers in, but rather to fill the pages of a book that
seems destined for the coffee table rather than a desktop.

One striking aspect of the DBN book is its ahistoricity … the year is 1999,
the Sony PlayStation and access to the World Wide Web are popular
phenomea. Yet the text seems remarkably devoid of any contact with
specific tools or practices. Even Maeda’s invocations of historical figure
like the Bauhaus and Paul Rand are vague, evoking a sort of fictional
Mad Men-esque universe with the creative young men (the proto
forefathers) at their drawing boards and a sense of “timeless design”
values like a devotion to discipline and order.

At the end of the book Maeda responds to the critique (provided to him
by one of the students programming the system for him) of the (over)
simplification of the DBN language recounting how a visit to a
“university-level Java class for designers” reconfirmed his belief in his
approach after when listening to the instructor “teach the finer points of
object-oriented programming and bit masking of 24-bit color values”
made him feel “lost in all the gibberish”. He then doubles down on the
idea of “simplification” being the “constant goal” of programming.
[dbn_p252] Rather than trying to bridge what in fact is a gulf between
two diverse practices, Maeda dismisses that which he doesn’t (care to)
understand in the name of simplification.

processing

Processing, then was born as kind of fork or remake of DBN. Like DBN,
Reas and Fry built Processing in Java, a desktop application that exists
outside of the web but which can be used to publish sketches as
“applets” embedded in a web page and published online. Reas and Fry
added commands to work with color and multiple output sizes, as well as
ready providing many readymade commands for for instance draw
shapes like circle, rectangle, and triangle. Other functions control
parameters like the color of fill or the width of the stroke (or outline) of
each shape.

Input functions allow access to the mouse and keyboard to produce
dynamic graphics that respond to the user. Processing sketches consists
of (at least) two functions: setup which is invoked once and draw which is
invoked continuously; the default frequency being the refresh rate of the
computer’s display (typically 60 times per second). By using variables,
and changing their values, graphics can be made dynamic. In addition,
graphics by default are rendered using a technique known as “anti-
aliasing” to appear “smoother” and less pixelated.

Most of the examples presented in this book have a minimal
visual style. This represents not a limitation of the Processing
software, but rather a conscious decision by the authors to make
the code for each example as brief and clear as possible. We hope
the stark quality of the examples gives additional incentive to the
reader to extend the programs to her or his own visual language.5

Processing: A Programming Handbook for Visual Designers and Artists is
published in 2006 by the MIT Press, with Reas + Fry authors, and a
foreword by Maeda. The book comprises over 700 pages and is organized
by topics like: color, control, data, drawing, image, input, math, motion,
structure, typography. The book also contains extensive interviews with
artists working with digital tools not limited to Processing. As indicated
in the book’s introduction, many examples are illustrated by “stark” small
square images and concise code.

5 Casey Reas and Ben Fry, Processing: A Programming Handbook for
Visual Designers and Artists (Cambridge: MIT Press, 2007), xxi-xxii.

[TODO: EXPAND THIS TO TALK (as in ImageMagick) about HOW
PROCESSING IS PRESENTED … evt include a Processing sketch ?!]

Behind a seemingly “neutral” aesthetic, Processing I embodies a very
particular set of values and assumptions. The “visual minimalism”
claimed in the Processing handbook, belies the project’s expansive claims
on representing a pedagogic approach relevant for “visual designers and
artists”.

The project’s “neutral” aesthetics while dimly echoing a once-radical
Bauhaus aesthetic, ignores the larger pedagogic program of the
historical Bauhaus’ experimentation with the materials of their
(contemporary) technical production. The framework valorizes
smoothness and fluidity, that leads one to prioritize interactivity as that
which happens on the surface of a sketch, rather than say in the network,
or among collaborators.

software structures

In 2004, Reas co-developed an exhibition at the Whitney gallery called
Software Structures. Inspired by Sol Lewitt’s wall drawings, Software
Structures presented a series of abstract rules for the production of an
image, including some from Lewitt. The rules were then implemented
using a variety of “materials”: Processing, Flash MX, and C++.

A benefit of working with software structures instead of
programming languages is that it places the work outside the
current technological framework, which is continually becoming
obsolete. Because a software structure is independent from a
specific technology, it is possible to continually create

manifestations of any software structure with current technology
to avoid retrograde associations.6

In 2016, the Whitney published a “restored” version of Software
Structures.7 As technologies like Java and Flash had then for reasons
both technical and commercial fallen out of popular use on the web, the
new version featured many of the processing sketches adapted by Reas
to use p5.js. [TODO: what’s p5.js!]

Despite the project’s earlier stated interest in exploring diverse
“materialities”, it’s telling that rather than considering the older
processing implementations as a different material and presenting
screenshots of them as was done for the Flash and C++ examples, the
“restoration” maintains the illusion of a “permanence” to the processing
sketches, placing them closer to those imagined “software structures”
than to “retrograde” technologies like Java or an out-dated browser. In
addition this “adaptation” hides the quite significant work that has gone
into (1) the development and subsequent implementation in different
browsers of the newly standardized canvas element8, as well as the work
creating the p5.js library to bridge from the legacy processing code to
this new standard.9

imagemagick

In 2007 I attended a book launch of the Processing Handbook. Earlier in
the day, I had bought another technical book “ImageMagick Tricks: Web
Image Effects from the Command line and PHP” by Sohail Salehi10. While
waiting for the presentation to begin, I met Casey Reas at the back of the
room. He was curious about the book I had with me and looked briefly at
it. He had never heard of ImageMagick.

6 Casey Reas, “Paragraphs on Software Art”, Software Structures,
retrieved October 28 2021,
https://artport.whitney.org/commissions/softwarestructures/text.html#str
ucture.

7 https://whitney.org/exhibitions/software-structures

8 https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-
element

9 Despite the seeming similarity of names, Java and Javascript are two
completely independent and quite different programming languages.
Adapting software from one to the other is not trivial.

10 Sohail Salehi, ImageMagick Tricks (Birmingham: Packt Publishing,
2006)

https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://whitney.org/exhibitions/software-structures
https://artport.whitney.org/commissions/softwarestructures/text.html#structure
https://artport.whitney.org/commissions/softwarestructures/text.html#structure

ImageMagick started with a request from my DuPont supervisor,
Dr. David Pensak, to display computer-generated images on a
monitor only capable of showing 256 unique colors
simultaneously. In 1987, monitors that could display 24-bit true
color images were rare and quite expensive. There were a
plethora of chemists and biologists at DuPont, but very were few
computer scientists to confer with. Instead, I turned to Usenet for
help, and posted a request for an algorithm to reduce 24-bit
images to 256 colors. Paul Raveling of the USC Information
Sciences Institute responded, with not only a solution, but one
that was already in source code and available from USC’s FTP
site. Over the course of the next few years, I had frequent
opportunities to get help with other vexing computer science
problems I encountered in the course of doing my job at DuPont.
Eventually I felt compelled to give thanks for the help I received
from the knowledgeable folks on Usenet. I decided to freely
release the image processing tools I developed to the world so
that others could benefit from my efforts.11

ImageMagick, first released in 1990, is a popular free software tool that’s
often referred to as a “swiss army knife” due to its ability to convert
between hundreds of different image formats, and for the many built-in
features to filter, manipulate and generate images. Thanks to the
software being “not chemically or biologically based”, Cristy was able to
release the software as free software (echoing the way the UNIX
operating system became free software due to its marginality to the
interests of Bell Labs). The software is full of particularities. For
instance, there are a number of built in images including a wizard (the

11 John Cristy, “History”, ImageMagick website. Retrieved from the
Internet archive Oct 28, 2021,
https://web.archive.org/web/20161029234747/http://www.imagemagick.o
rg/script/history.php.

https://web.archive.org/web/20161029234747/http://www.imagemagick.org/script/history.php
https://web.archive.org/web/20161029234747/http://www.imagemagick.org/script/history.php

mascot of the software) seated at a drawing table contemplating an
image of the Mona Lisa.

ImageMagick is a command-line tool, designed to be used via textual
commands. The typical usage of ImageMagick is to take one image as
input, applying one or more transformations to it, and output a new
image. In this way the tool can be used repeatedly in a so-called
“pipelines”, or otherwise composed together in structures called (shell)
scripts. In these scripts ImageMagick commands can be mixed with other
commands from any software installed on the user’s computer that also
provides a command-line interface.

Salehi’s book directly reflects the structure of ImageMagick, with
chapter organized around various incorporated “tools”: convert, mogrify,
composite, montage, identify, display, conjure. The examples are
practical, creating logos or adding captions or a border to an image. One
example renders the word “Candy” with colorful stripes. Another series
of examples duplicates and inverts the image and text of classical Persian
poet “Hafez” to create a kind of playing card. Another example uses
ImageMagick in conjunction with PHP and HTML to produce an online
“e-card maker”, a sequence of commands is demonstrated to render the
text “No More War” (in a dripping paint font), deform it, and project it
onto the side of a chess piece.

In another extended example, a British flag is constructed in steps.
Rather than approaching the project as drawing geometric forms on a
canvas, Salehi uses the diversity of ImageMagick’s manipulations,
performing a series of commands whose textual names invoke a sense of
physical construction: blocks of color are skewed, sheared, cropped,
flipped, flopped, and finally spliced (with “gravity” set to center). The
approach creates a number of intermediate images, thus creating the
digital equivalents of “cuttings” or leftover materials in the process.

Below, the (intermediate) results from the same example slightly
modified to take an image as input:

Source image:
https://en.wikipedia.org/wiki/Boris_Johnson#/media/File:Boris_Johnson_o
fficial_portrait_(cropped).jpg, Ben Shread / Cabinet Office, UK Open
Government Licence v3.0 (OGL v.3)

convert -size 300x200 xc:'#002377' -fill white -draw 'skewX 128
image over 0,0 0,0 in/boris.jpg' background1.png
convert -size 300x40 xc:none -background transparent -fill '#ce201a'
-draw ' rectangle 0,0, 300,20' -shear 32 band.png
convert background1.png -draw ' image over -25,0 0,0 band.png'
background1.png
convert background1.png -draw ' image over -25,0 0,0 band.png'
background1.png
convert background1.png -crop 150x94+0+0 area1.png
convert area1.png -flip -flop area3.png
convert background1.png -draw ' image over -25,-21 0,0 band.png'
background2.png
convert background2.png -flop background2.png
convert background2.png -crop 150x94+150+0 area2.png
convert area2.png -flip -flop area4.png
convert -size 300x188 xc:none -draw ' image over 0,0 0,0 area1.png'
-draw ' image over 150,0 0,0 area2.png' -draw ' image over 0,94 0,0
area4.png' -draw ' image over 150,94 0,0 area3.png' mixed.png
convert mixed.png -background white -gravity center -splice 20x20 -
background '#ce201a' -splice 40x40 flag.png

[TODO: REPLACE ABOVE WITH BOOK SPREAD]

constructivism and bricoleurs

In the 1920s Russian avant-gardist El Lissitsky would move to Berlin and
produce work that was highly influential to the then nascent Bauhaus. In
1923, Lissitsky illustrated a publication of poems by friend Vladimir
Majakovskij. In it he created graphical forms by mixing typographic

https://en.wikipedia.org/wiki/Boris_Johnson#/media/File:Boris_Johnson_official_portrait_(cropped).jpg
https://en.wikipedia.org/wiki/Boris_Johnson#/media/File:Boris_Johnson_official_portrait_(cropped).jpg

elements with geometric forms created by (mis-) using spacing or “blind”
elements typically used to create negative/unprinted space between lines
of type, as positives producing geometric forms. This style, sometimes
called constructivism, was part of an effort to make a radical break from
traditional styles of typographic layout and illustration using the means
then available for print. The book is notable for its “interactivity” via
iconic tabbed pages.

For the Voice, El Lissitzky designer; Image from the archive of Guttorm
Guttormsgaard. Used with permission.
https://arkiv.guttormsgaardsarkiv.no/node/19/item/39

https://arkiv.guttormsgaardsarkiv.no/node/19/item/39

Constructivism is also the name given to the pedagogic project
associated with Seymour Papert. In the 1970s Papert co-developed a
pedagogy for teaching children mathematics and programming based on
the LOGO programming language. Part of the system was a (virtual)
robotic turtle that could be programmed to draw figures. The system,
known as Turtle graphics, had commands like: forward, turn left, turn
right, pen up, pen down, that directly addressed the “turtle” to draw
shapes while moving.

The process reminds one of tinkering: learning consists of
building up a set of materials and tools that one can handle and
manipulate. Perhaps most central of all, it is a process of working
with what you’ve got. …. This is a science of the concrete, where
the relationships between natural objects in all their
combinations and recombinations provide a conceptual

vocabulary for building scientific theories. Here I am suggesting
that in the most fundamental sense, we, as learners, are all
bricoleurs.12

TO CIRCLE REPEAT [FORWARD 1 RIGHT 1]

Papert described the pedagogic project of LOGO in Mindstorms[^ref]. In
a key example, Papert describes how students can be taught about
circles by imagining (or better yet themselves enacting) the turtle
repeatedly performing the “go forward a little, turn a little”. He contrasts
this with the formal equation of a circle (x2 + y2 = r2) typically taught in
an elementary school geometry class.

[TODO: Expand: 3 sense of Bricolage: (1) bricolo / derogatory, (2) hacker
sense of DIY / duct tape, (3) Levi Strauss (from which Paper borrows the

12 Seymour Papert, Mindstorms (Cambridge: MIT Press, 1980), 173.

term)] In Belgium, where I currently live “bricolage” is the French
language equivalent to “DIY” and is often used in a derogatory sense to
indicate that something is made in an amateurish way. Papert embraces
the term, a central point being how informal/intuitive methods not only
appeal to “common sense” but also engage more profoundly with the
materiality of its subject than would a formal approach. In the case of the
circle, the “turtle” method is not only a way for the student to imagine
the problem physically, it also relates to methods of differential calculus,
something the algebraic formulation misses completely. [ADD:
Differential calculus, developed (in part) by Newton as a way to try to
understand / theorize the motion of planets based on observations…
also ? formal decisions make no reference to HOW to do something]

For most there is a total dissociation between these live activities
and the dead school math. We have stressed the fact that using
the Turtle as metaphorical carrier for the idea of angle connects
it firmly to the body geometry. We have called this body
syntonicity. Here we see a cultural syntonicity: The Turtle
connects the idea of angle to navigation, activity firmly and
positively rooted in the extraschool culture of many children.13

[TODO: EXPAND: syntonicity & the vernacular]

bricolage | formal |
processual | results-oriented |
iterative, in steps | instantaneous|
errors | perfection |
approximation | ideal |
pipelined/partial | self-contained |
100s of formats | code/API as essence |
pipeline | blank canvas |
collective | singular |

no, too easy, processing is seen as part of a generative art scene… its
name resonant with the idea of the importance of process… but not of
processor/ idealized machine with unlimited resources.

misplaced concretism & a feminist method

Alfred North Whitehead, writing on the sciences, established an
influential idea of a “fallacy of misplaced concreteness”. The idea is that
making abstractions, such as what happens when a particular
phenomenon is named, is a simplification that works by suppressing
“what appear to be irrelevant details”.14 In Media Ecologies, Matthew
Fuller extends this thinking to consider technical standards as “a

13 Seymour Paper, Mindstorms, 68.

14 Alfred North Whitehead, Science and the modern world (New York:
Free Press, 1967), retrieved from the Internet archive Oct 28, 2021
https://archive.org/details/sciencemodernwor00alfr/page/52/mode/2up

https://archive.org/details/sciencemodernwor00alfr/page/52/mode/2up

material instantiation”15 of Whitehead’s misplaced concreteness, and
considers how technical devices through a process of objectification
“expect in advance the results that they obtain”.16 Fuller cites the
example of Laurence Lessig, who makes an argument for regulation of
the Internet based on the assertion of standard objects (such as
networking protocols) being layered and reconfigurable.

[Lessig’s argument] allows us to recognize another characteristic
of the standard object: that, while it may be simultaneously
embedded within multiple compositions wherein it may be
involved in many, separate, disjunctive, contiguous, or
contradictory processes, it does provide a threshold, either side
of which is differentiated enough for significant political,
technical, aesthetic, and social conjunctions or conflicts to
occur.17

Susan Leigh Star takes Whitehead’s “misplaced concretism” and
proposes a feminist methodology specific to information technology.18
Her essay develops the idea of “standards” as one type of “Boundary
object”, which she describes as:

[…] those scientific objects which both inhabit several
communities of practice and satisfy the information requirements
of each of them. Boundary objects are thus objects which are
both plastic enough to adapt to local need and common identity
across sites.19

Star cites Donna Haraway, who wonders in A Manifesto for Cyborgs:

How do I then act the bricoleur that we’ve all learned to be in
various ways, without being a colonizer…. How do you keep
foregrounded the ironic and iffy things you’re doing and still do
them seriously […]

Star draws on a tradition of diverse feminist thinking through the
“articulation of multiplicity, contradiction, and partiality, while standing
in a politically situated, moral collective” to synthesize and propose what
she calls the important attributes of a feminist method:

1. experiential and collective basis;
2. processual nature;

15 Matthew Fuller, Media Ecologies (Cambridge: MIT Press, 2005), 127.

16 Matthew Fuller, 104.

17 Matthew Fuller, 129.

18 Susan Leigh Star, “Misplaced Concretism and Concrete Situations:
Feminism, Method, and Information Technology” (1994), Boundary
Objects and Beyond (Cambridge: MIT Press, 2015)

19 Susan Leigh Star, 157.

3. honoring contradiction and partialness;
4. situated historicity with great attention to detail and specificity; and
5. the simultaneous application of all of these points.20

For me tools like ImageMagick embody collectivity from it’s origins as a
way to “give back” to a community sharing code over usenet, through to
its continued development by multiple authors and relation to the larger
free software community as an invaluable toolbox for extremely diverse
pratices. I find the experiential in the highly flexible commandline
interface, itself also an example of honoring contradiction and
partialness, with often more than one way to express the same
transformation. The processual is implicit in its construction as a tool of
transformation, encouraging an exploratory iterative approach to
composing transformations to arrive at a desired outcome, often leading
to missteps and errors that can be happy accidents and lead one to
reconsider one’s goals. Finally, in its extreme support of hundreds of
different formats, ImageMagick use often leads to the discovery and
exploration of diverse image formats, each with related practices, and
contexts.

As a pedagogic project, Processing has historically seemed uninterested
in its own underlying materiality, preferring its students to explore the
“world at large” by adding additional layers of technology in the form of
sensors, rather than considering all the ways the technologies they use
are already engaged and impacting the world.

A concatenation of operations of misplaced concreteness thus
allow the gaps, overlaps, and voids in the interrelated capacities
of such systems to construct a more “accurate” account of its
own operations.21

Vernacular rejects the “false neutrality” of the seamless universal design
solution, embracing instead the tips and tricks of specific tools, in
specific contexts. A vernacular composition tears open its seams proudly
displaying the glitches and gaps as a badge of honor of a world view of
truth as multi-threaded, incomplete, and sometimes uncomfortable, and
is engaged with the world and not afraid to be seen as a monster.

20 Susan Leigh Star, 148-149.

21 Matthew Fuller, 104.

	design by numbers
	processing
	software structures

	imagemagick
	constructivism and bricoleurs
	misplaced concretism & a feminist method

