
torn at the seams: considering digital
vernacular

Michael Murtaugh

Processing is a free, open source programming language and 
environment used by students, artists, designers, architects, 
researchers and hobbyists for learning, prototyping, and 
production. Processing is developed by artists and designers as 
an alternative to proprietary software tools in the same domain. 
The project integrates a programming language, development 
environment, and teaching methodology into a unified structure 
for learning and exploration.1

Teaching programming with free software to media design students for 
years, I’ve resisted Processing as it has always seemed to me to embody 
a particular kind of solipsism of digital interactivity and graphics that I 
want my students to avoid.

design by numbers

In the fall of 1996, John Maeda joined the MIT Media Lab to replace the 
recently deceased Muriel Cooper. Cooper was the first art director of the 
MIT Press, producing influential designs such as a 1969 catalog of the 
Bauhaus and the iconic MIT Press logo, a Bauhaus-inspired stylized 
graphical rendering of the letters “mitp”. Cooper started the Visible 
Language Workshop, later one of the founding groups of the MIT Media 
Lab, to research the intersection of publishing, design, and computation.

1 Casey Reas and Ben Fry, Processing: A Programming Handbook for 
Visual Designers and Artists (Cambridge: MIT Press, 2007), xxi-xxii.



Our forefathers at the Bauhaus, Ulm, and many other key centers
for design education around the world labored to create a sense 
of order and method to their teaching. Thanks to their 
trailblazing work, teaching at the university level gradually 
became accepted as a meaningful and constructive activity. A 
drawing board, small or large, became the stage for paper, pen, 
ink, and blade to interact in the disciplined activity that 
characterized the profession of visual design.2

Maeda created the Aesthetics and Computation group in part to continue
Cooper’s research. Maeda developed (with students Tom White, Peter 
Cho, Ben Fry, and later Casey Reas among others) a software system 
called Design by Numbers3. It had extreme constraints such as a fixed 
100 by 100 pixel size and monochrome-only graphics. The command set 
is similarly constrained with only two drawing commands for lines and 
points. Commands like “paper” and “pen”, controlling the gray value of 
background and foreground colors, invoke the materiality of a (pre-
digital) print practice. The accompanying print publication also had a 
square format.

When designing this system for learning basic computational 
media design, I intentionally limited the set of commands and 
constructs to a minimal number of possibilities. If I had given you
drawing capability beyond a line or setting a dot, the examples 
could have been more exciting, but the point could not be made 
clearly because your attention would be drawn to the picture and
not to the code.4

2 John Maeda, Design By Numbers. (Cambridge: MIT Press, 1999), 19.

3 https://dbn.media.mit.edu/

4 John Maeda. 144.

https://dbn.media.mit.edu/


This valorization of “code” over picture is evident in the book spread 
where a digital image of a vase is presented along with its “code”: a 
sequence of “set” commands describing the image pixel by pixel. Though 
it’s possible that such an image might be produced in this way 
(discipline!) in practice such images are created by translating a digital 
photograph using one of a family of techniques known as “dithering” to 
produce a pixelated image with limited gray values. Here these tools and 
techniques are unmentioned, with expansive space given instead to the 
listing of numbers.

I remember sitting with a friend at his Commodore 64 in the 1980s 
typing lines and lines of “poke” commands with digital data from the 
pages of home computer magazines to reproduce simple games. These 
pages would typically use compact representations (like hexadecimal) 
and include things like “checksums” and bootstrap programs to help you 
correctly enter and verify the data you entered.

In the case of the DBN’s digital vase, the purpose does not seem to be for
someone to actually type the numbers in, but rather to fill the pages of a 
book that seems destined for the coffee table rather than a desktop. 
Similar to the fields of 1s and 0s still popular as backgrounds of book 
sleeves and PowerPoint slides to suggest “all things digital”, the 
presentation is gratuitous and misleading in terms of actual practice. 
Like an observer unfamiliar with deaf culture confusing the hand 
gestures of finger spelling with the expressivity (and ambiguity) of actual 
sign language, the displays of 1s and 0s, or in this case of numeric 
coordinates and gray values, is a shorthand that refers digital practices 
without actually participating in them.

The above is just one example of DBN’s lack of historicity. The year is 
1999, and for instance the Sony PlayStation and access to the World 
Wide Web are popular phenomena. Yet the text seems remarkably devoid
of any reference to specific tools or practices. Even Maeda’s invocations 



of historical figures like the Bauhaus and Paul Rand are vague, evoking a 
sort of nostalgic Mad Men universe with the creative young men (those 
future forefathers) at their drawing boards and a sense of “timeless 
design values” like a devotion to discipline and order.

At the end of the book Maeda responds to a critique apparently made to 
him by one of the students doing some of the programming of the DBN 
system itself. Recounting how a visit to a “university-level Java class for 
designers […] teach[ing] the finer points of object-oriented programming 
and bit masking of 24-bit color values” made him feel “lost in all the 
gibberish”, he reasserts his pedagogical approach as an alignment with 
the “simplification” that is the “constant goal” of programming.5 Rather 
than trying to bridge the gulf between diverse practices, Maeda 
dismisses that which he doesn’t (care to) understand in the name of 
simplification.

processing

Processing was born as kind of fork or remake of DBN. Like DBN, Reas 
and Fry built Processing in Java, a desktop application that exists outside
of the web but which can be used to publish sketches as “applets” 
embedded in a web page and published online. Reas and Fry added 
commands to work with color and multiple output sizes, as well as 
commands to draw basic shapes like circles, rectangles, and triangles.

Processing sketches consists of (at least) two functions: setup which is 
invoked once and draw which is invoked continuously; the default 
frequency being the refresh rate of the computer’s display (typically 60 
times per second). By using variables combined with input functions 
allowing access to the mouse and keyboard, graphics can be made 
dynamic and responsive to the user. In addition, graphics by default are 
rendered using a technique known as “anti-aliasing” to appear 
“smoother” and less pixelated.

5 John Maeda. 252.



Most of the examples presented in this book have a minimal 
visual style. This represents not a limitation of the Processing 
software, but rather a conscious decision by the authors to make 
the code for each example as brief and clear as possible. We hope
the stark quality of the examples gives additional incentive to the 
reader to extend the programs to her or his own visual language.6

Processing: A Programming Handbook for Visual Designers and Artists is
published in 2006 by the MIT Press, with Reas + Fry authors, and a 
foreword by Maeda. The book comprises over 700 pages and is organized
by topics like: color, control, data, drawing, image, input, math, motion, 
structure, typography. The book follows the visual style of the DBN book,
with small square (mostly) monochrome images accompanying concise 
listings of code.

6 Casey Reas and Ben Fry, Processing: A Programming Handbook for 
Visual Designers and Artists (Cambridge: MIT Press, 2007), xxi-xxii.



Despite the claim of leaving space for others to bring their own “visual 
language”, and thus an implicit proposition of its own aesthetics as 
“neutral”, Processing embodies a very particular set of values and 
assumptions. The framework valorizes smoothness and fluidity, that leads
one to imagine interactivity as that which happens on the surface of a 
sketch, rather than say in the network, or among collaborators. The 
mechanism of the “draw loop” assumes that code runs in a negligible 
amount of time, that is less than the refresh rate (and the default 1/60th 
of a second). This particular, again implicit, relationship with time places 
the programmer in an adversarial relation with the processor of the 
viewer’s computer and makes it all too easy (certainly for novices) to 
produce code that makes the viewer’s computer struggle and lag.



Unlike DBN, the processing book contains extensive interviews with 
artists working with digital tools, mostly using a variety of tools outside 
of processing like C++, PHP and Flash. Despite the “minimalism” of the 
examples, the book’s subtitle claims relevance to a broad audience of 
“visual designers and artists”. The link to Processing is often unclear.

There’s a strange disconnect where a diversity of visual and computation 
practices are shown, such as sequential images to make animations, or 
cellular automata, but the only real link to processing seems to be as a 
kind of universal “blank canvas” onto which all kinds of (digital) practices
can be projected.

Another disconnect occurs when one crosses out of what the software 
makes simple. For example, while very easy to make a sketch respond to 
mouse clicks, responding to a mouse click on a specific shape, suddenly 
involves using Java classes and adding code “hooks” to your draw loop to 
make sure the pieces work together. While this kind of code is not itself 
so unusual, the transition is really abrupt because the core abstractions 
are so simplified, there is no bridge.

Still another disconnect involves processing sketches when published 
online. Web pages have structures for text layout and content flowing, 
and structural elements (like checkboxes and links) that inherently 
respond to mouse clicks. There is a a built-in standard mechanism (the 
so-called DOM or document object model), to further customize these 
behaviors. Processing sketches, even situated in a web page, don’t 
participate or give access to this model, nor does the framework offer 
using alternative graphical elements like SVG7.

software structures

In 2004, Reas co-developed an exhibition at the Whitney gallery called 
Software Structures. Invoking Sol Lewitt’s wall drawings as an 
inspiration, the project presents a series of abstract rules (or software 
structures) for the production of an image, including some from Lewitt. 
The rules were then implemented using a variety of “materials”: 
Processing, Flash MX, and C++.

A benefit of working with software structures instead of 
programming languages is that it places the work outside the 
current technological framework, which is continually becoming 
obsolete. Because a software structure is independent from a 
specific technology, it is possible to continually create 
manifestations of any software structure with current technology 
to avoid retrograde associations.8

7 A web standard for “scalable vector graphics”, SVG is more integrated 
into the DOM than are java applets (in classic Processing) or the canvas 
element (see p5.js).

8 Casey Reas, “Paragraphs on Software Art”, Software Structures, 
retrieved October 28 2021, 



In 2016, the Whitney published a “restored” version of Software 
Structures.9 As technologies like Java and Flash had then for reasons 
both technical and commercial fallen out of popular use on the web, the 
new version featured many of the processing sketches adapted by Reas 
to use p5.js, a recent port of processing to Javascript made by artist 
Lauren Lee McCarthy.10

Despite the project’s earlier stated interest in exploring diverse 
“materialities”, it’s telling that rather than considering the older 
processing implementations as a different material and presenting 
screenshots of them as was done for the Flash and C++ examples, the 
“restoration” maintains the illusion of a “permanence” to the processing 
sketches, placing them closer to those imagined “software structures” 
than to “retrograde” technologies like Java or an out-dated browser. In 
addition the “adaptation” elides the work of the development and 
subsequent implementation of the then recently standardized canvas 
element11, as well as that of the creation of the p5.js library.

imagemagick

In 2007 I attended a book launch of the Processing Handbook. Earlier in 
the day, I had bought another technical book “ImageMagick Tricks: Web 
Image Effects from the Command line and PHP” by Sohail Salehi12. While
waiting for the presentation to begin, I met Casey Reas at the back of the
room. He was curious about the book I had with me and looked briefly at 
it. He had never heard of ImageMagick.

https://artport.whitney.org/commissions/softwarestructures/text.html#str
ucture.

9 https://whitney.org/exhibitions/software-structures

10 Despite the seeming similarity of names, Java and Javascript are two 
completely independent and quite different programming languages. 
Adapting software from one to the other is not trivial. In making the 
adaptation McCarthy claims “diversity and inclusion as core values upon 
which the software is built”. See: https://lauren-mccarthy.com/p5-js and 
https://p5js.org/. However, most of the limitations I talk about here still 
apply to sketches made with the current version of p5.js.

11 https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-
element

12 Sohail Salehi, ImageMagick Tricks (Birmingham: Packt Publishing, 
2006)

https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://html.spec.whatwg.org/multipage/canvas.html#the-canvas-element
https://p5js.org/
https://lauren-mccarthy.com/p5-js
https://whitney.org/exhibitions/software-structures
https://artport.whitney.org/commissions/softwarestructures/text.html#structure
https://artport.whitney.org/commissions/softwarestructures/text.html#structure


ImageMagick started with a request from my DuPont supervisor, 
Dr. David Pensak, to display computer-generated images on a 
monitor only capable of showing 256 unique colors 
simultaneously. In 1987, monitors that could display 24-bit true 
color images were rare and quite expensive. There were a 
plethora of chemists and biologists at DuPont, but very were few 
computer scientists to confer with. Instead, I turned to Usenet for
help, and posted a request for an algorithm to reduce 24-bit 
images to 256 colors. Paul Raveling of the USC Information 
Sciences Institute responded, with not only a solution, but one 
that was already in source code and available from USC’s FTP 
site. Over the course of the next few years, I had frequent 
opportunities to get help with other vexing computer science 
problems I encountered in the course of doing my job at DuPont. 
Eventually I felt compelled to give thanks for the help I received 
from the knowledgeable folks on Usenet. I decided to freely 
release the image processing tools I developed to the world so 
that others could benefit from my efforts.13

ImageMagick, first released in 1990, is a popular free software tool that’s
often referred to as a “Swiss army knife” due to its ability to convert 
between hundreds of different image formats, and for the many built-in 
features to filter, manipulate and generate images. Thanks to the 
software being “not chemically or biologically based”, Cristy was able to 
release the software as free software (echoing the way the UNIX 
operating system became free software due to its marginality to the 
interests of Bell Labs). The software is full of particularities. For 
instance, there are a number of built in images including a wizard (the 

13 John Cristy, “History”, ImageMagick website. Retrieved from the 
Internet archive Oct 28, 2021, 
https://web.archive.org/web/20161029234747/http://www.imagemagick.o
rg/script/history.php.

https://web.archive.org/web/20161029234747/http://www.imagemagick.org/script/history.php
https://web.archive.org/web/20161029234747/http://www.imagemagick.org/script/history.php


mascot of the software) seated at a drawing table contemplating an 
image of the Mona Lisa.

ImageMagick is a command-line tool, designed to be used via textual 
commands. The typical usage of ImageMagick is to take one image as 
input, applying one or more transformations to it, and output a new 
image. In this way the tool can be used repeatedly in so-called 
“pipelines”, or otherwise composed together in structures called (shell) 
scripts. In these scripts ImageMagick commands can be mixed with other
commands from any software installed on the user’s computer that also 
provides a command-line interface.

Salehi’s book directly reflects the structure of ImageMagick, with 
chapter organized around various incorporated “tools”: convert, mogrify, 
composite, montage, identify, display, conjure. The examples are 
practical, creating logos or adding captions or a border to an image. One 
example renders the word “Candy” with colorful stripes. Another series 
of examples duplicates and inverts the image and text of classical Persian
poet “Hafez” to create a kind of playing card. Another example uses 
ImageMagick in conjunction with PHP and HTML to produce an online 
“e-card maker”, a sequence of commands is demonstrated to render the 
text “No More War” (in a dripping paint font), deform it, and project it 
onto the side of a chess piece.



In another extended example, a flag is constructed in steps. Rather than 
approaching the project as drawing geometric forms on a canvas, Salehi 
uses the diversity of ImageMagick’s manipulations, performing a series 
of commands whose textual names invoke a sense of physical 
construction: blocks of color are skewed, sheared, cropped, flipped, 
flopped, and finally spliced (with “gravity” set to center). The approach 
creates a number of intermediate images, thus creating the digital 
equivalents of “cuttings” or leftover materials in the process.

By modifying the first step to use an image14, I produced the following 
(intermediate) results:

14 Image: 
https://commons.wikimedia.org/wiki/File:Boris_Johnson_official_portrait_(
cropped).jpg, Ben Shread / Cabinet Office, UK Open Government Licence
v3.0 (OGL v.3)

https://commons.wikimedia.org/wiki/File:Boris_Johnson_official_portrait_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Boris_Johnson_official_portrait_(cropped).jpg


constructivism and the bricoleur

In the 1920s Russian avant-gardist El Lissitsky would move to Berlin and 
produce work that was highly influential to the then nascent Bauhaus. In 
1923, Lissitsky illustrated a publication of poems by friend Vladimir 
Majakovskij. In it he created graphical forms by mixing typographic 
elements with geometric forms created by (mis-) using spacing or “blind”
elements typically used to create negative/unprinted space between lines
of type, as positives producing geometric forms. This style, sometimes 
called constructivism, was part of an effort to make a radical break from 
traditional styles of typographic layout and illustration using the means 
then available for print. The book is notable for its “interactivity” via 
iconic tabbed pages.



For the Voice, El Lissitzky designer; Image from the archive of Guttorm 
Guttormsgaard. Used with permission. 
https://arkiv.guttormsgaardsarkiv.no/node/19/item/39

https://arkiv.guttormsgaardsarkiv.no/node/19/item/39


Constructivism is also the name given to the pedagogic project 
associated with Seymour Papert. In the 1970s Papert co-developed a 
pedagogy for teaching children mathematics and programming based on 
the LOGO programming language. Part of the system was a (virtual) 
robotic turtle that could be programmed to draw figures. The system, 
known as Turtle graphics, had commands like: forward, turn left, turn 
right, pen up, pen down, that directly addressed the “turtle” to draw 
shapes while moving.

The process reminds one of tinkering: learning consists of 
building up a set of materials and tools that one can handle and 
manipulate. Perhaps most central of all, it is a process of working
with what you’ve got. …. This is a science of the concrete, where 
the relationships between natural objects in all their 
combinations and recombinations provide a conceptual 



vocabulary for building scientific theories. Here I am suggesting 
that in the most fundamental sense, we, as learners, are all 
bricoleurs.15

Papert described the pedagogic project of LOGO in book titled 
Mindstorms. In a key example, Papert describes how students can be 
taught about circles by imagining (or better yet themselves enacting) the 
turtle repeatedly performing the sequence “go forward a little, turn a 
little”. He contrasts this with the formal equation of a circle (x2 + y2 = r2) 
typically taught in an elementary school geometry class.

TO CIRCLE REPEAT [FORWARD 1 RIGHT 1]

In a powerful central visual sequence, Mindstorms presents a series of 
illustrations showing the screen output of code alongside a running 
15 Seymour Papert, Mindstorms (Cambridge: MIT Press, 1980), 173.



dialog. The conversation starts with a proposition to draw a flower like 
one sketched on paper. First they consider what programs they might 
already have to make use of, in this case they have a procedure to draw a
quarter circle. Through a series of steps, mistakes are made, plans are 
adjusted and retried, happy accidents lead to discoveries (it’s a bird!). In 
the process the “ends become means” and a new tool is put to use to 
create a garden, and then, incorporating the “bug”, a flock of flying birds.

In Belgium, where I live “brico” is the French language equivalent to 
“DIY” and is often used in a derogatory sense to indicate that something 
is made in an amateurish way. Papert, is borrowing the term from Claude
Lévi-Strauss, who first used the term in an anthropological context 
hypothesizing how “universal” knowledge might form from myth and 
fragmentary cultural knowledge16.

For Papert, bricolage exhibits a quality whereby informal methods not 
only appeal to “common sense” but also engage more profoundly with the
materiality of its subject than would a formal approach. In the case of the
circle, the “turtle” method is not only a way for the student to imagine 
the problem physically, it also relates to methods of differential calculus, 
something the algebraic formulation misses completely. In hacker circles,
bricolage is evident in an approach of embracing “glue code” and “duct 
tape” methods, like the pipeline, that allow different systems to be 
“hacked” together to do useful (new) things.

misplaced concretism & a feminist method

Alfred North Whitehead, writing on the sciences, established an 
influential idea of a “fallacy of misplaced concreteness”. The idea is that 
making abstractions, such as what happens when a particular 
phenomenon is named, is a simplification that works by suppressing 
“what appear to be irrelevant details”.17 In Media Ecologies, Matthew 
Fuller extends this thinking to consider technical standards as “a 
material instantiation”18 of Whitehead’s misplaced concreteness, and 
considers how technical devices through a process of objectification 
“expect in advance the results that they obtain”.19

Susan Leigh Star takes Whitehead’s “misplaced concretism” and 
proposes a feminist methodology specific to information technology.20 
16 Claude Lévi-Strauss. The Science of the Concrete. The Savage Mind 
(University of Chicago Press: 1966), Chapter 1.

17 Alfred North Whitehead, Science and the modern world (New York: 
Free Press, 1967), retrieved from the Internet archive Oct 28, 2021 
https://archive.org/details/sciencemodernwor00alfr/page/52/mode/2up

18 Matthew Fuller, Media Ecologies (Cambridge: MIT Press, 2005), 127.

19 Matthew Fuller, 104.

20 Susan Leigh Star, “Misplaced Concretism and Concrete Situations: 
Feminism, Method, and Information Technology” (1994), Boundary 

https://archive.org/details/sciencemodernwor00alfr/page/52/mode/2up


Her essay develops the idea of “standards” as one type of “Boundary 
object”, which she describes as:

[…] those scientific objects which both inhabit several 
communities of practice and satisfy the information requirements
of each of them. Boundary objects are thus objects which are 
both plastic enough to adapt to local need and common identity 
across sites.21

Star cites Donna Haraway, who wonders in A Manifesto for Cyborgs:

How do I then act the bricoleur that we’ve all learned to be in 
various ways, without being a colonizer…. How do you keep 
foregrounded the ironic and iffy things you’re doing and still do 
them seriously […]

Star draws on a tradition of diverse feminist thinking through the 
“articulation of multiplicity, contradiction, and partiality, while standing 
in a politically situated, moral collective” to synthesize and propose what 
she calls the important attributes of a feminist method:

1. experiential and collective basis;
2. processual nature;
3. honoring contradiction and partialness;
4. situated historicity with great attention to detail and specificity; and
5. the simultaneous application of all of these points.22

As a teacher, I enjoy using tools like ImageMagick in my teaching as it 
embodies collectivity from its origins as a way to “give back” to a 
community sharing code over usenet, through to its continued 
development by multiple authors and relation to the larger free software 
community as an invaluable toolbox for extremely diverse practices. I 
find the experiential in the highly flexible commandline interface, itself 
also an example of honoring contradiction and partialness, with often 
more than one way to express the same transformation. The processual is
implicit in its construction as a tool of transformation, encouraging an 
exploratory iterative approach to composing transformations to arrive at 
a desired outcome, often leading to misusage and errors that can be 
happy accidents and lead one to reconsider one’s goals. Finally, in its 
extreme support of hundreds of different formats, ImageMagick use often
leads to the discovery and exploration of diverse image formats, each 
with related practices and histories.

In contrast, I find as a pedagogic project, I find Processing actively 
uninterested in its own underlying materiality, aspiring instead to a kind 
of disembodied and bland universality. Students are encouraged to 

Objects and Beyond (Cambridge: MIT Press, 2015)

21 Susan Leigh Star, 157.

22 Susan Leigh Star, 148-149.



explore the “world at large” by adding additional layers of technology in 
the form of sensors, rather than considering all the ways the technologies
they use are already engaged with the world. The project’s “neutral” 
aesthetics while dimly echoing a once-radical Bauhaus aesthetic, ignores 
the larger pedagogic program of the historical Bauhaus’ engagement and
experimentation with the materials of their (contemporary) technical 
production.

A concatenation of operations of misplaced concreteness thus 
allow the gaps, overlaps, and voids in the interrelated capacities 
of such systems to construct a more “accurate” account of its 
own operations.23

Fuller’s recipe for critical media engagement feels like the basis of what 
might be termed a digital vernacular. A digital vernacular is about 
working withing the constraints of available resources, rather than living 
with a fantasy of negligible time or unlimited storage. A digital 
vernacular rejects the sense of disembodiment, rather if locates itself in 
interactions between many bodies. A digital vernacular finds itself in 
conversational forms that are open to happy accidents. A digital 
vernacular rejects the “false neutrality” of the seamless universal design 
solution, embracing instead the tips and tricks of specific tools, in 
specific contexts. A digital vernacular tears open its seams proudly 
displaying its glitches and gaps. A digital vernacular rejects the illusory 
construction of an isolated artist sitting at a blank canvas creating works 
from scratch. Instead the digital vernacular thrives on working with the 
contingencies of existing systems, and embraces working with boundary 
objects as a means of bridging diverse communities of practices.

23 Matthew Fuller, 104.


	design by numbers
	processing
	software structures

	imagemagick
	constructivism and the bricoleur
	misplaced concretism & a feminist method

