{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Similarity Queries\n", "[GENSIM tutorial](https://radimrehurek.com/gensim/auto_examples/core/run_similarity_queries.html#sphx-glr-auto-examples-core-run-similarity-queries-py)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import logging\n", "logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-05-30 11:17:30,012 : INFO : adding document #0 to Dictionary<0 unique tokens: []>\n", "2022-05-30 11:17:30,013 : INFO : built Dictionary<12 unique tokens: ['computer', 'human', 'interface', 'response', 'survey']...> from 9 documents (total 29 corpus positions)\n", "2022-05-30 11:17:30,014 : INFO : Dictionary lifecycle event {'msg': \"built Dictionary<12 unique tokens: ['computer', 'human', 'interface', 'response', 'survey']...> from 9 documents (total 29 corpus positions)\", 'datetime': '2022-05-30T11:17:30.014843', 'gensim': '4.2.0', 'python': '3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 2022, 14:12:15) [MSC v.1929 64 bit (AMD64)]', 'platform': 'Windows-10-10.0.22000-SP0', 'event': 'created'}\n" ] } ], "source": [ "# Creating the corpus\n", "\n", "from collections import defaultdict\n", "from gensim import corpora\n", "\n", "documents = [\n", " \"Human machine interface for lab abc computer applications\",\n", " \"A survey of user opinion of computer system response time\",\n", " \"The EPS user interface management system\",\n", " \"System and human system engineering testing of EPS\",\n", " \"Relation of user perceived response time to error measurement\",\n", " \"The generation of random binary unordered trees\",\n", " \"The intersection graph of paths in trees\",\n", " \"Graph minors IV Widths of trees and well quasi ordering\",\n", " \"Graph minors A survey\",\n", "]\n", "\n", "# remove common words and tokenize\n", "\n", "stoplist = set('for a of the and to in'.split())\n", "texts = [\n", " [word for word in document.lower().split() if word not in stoplist]\n", " for document in documents\n", "]\n", "\n", "# remove words that appear only once\n", "frequency = defaultdict(int)\n", "for text in texts:\n", " for token in text:\n", " frequency[token]+=1\n", "\n", "texts = [\n", " [token for token in text if frequency[token]>1]\n", " for text in texts\n", "]\n", "\n", "dictionary = corpora.Dictionary(texts)\n", "corpus = [dictionary.doc2bow(text) for text in texts]\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-05-30 11:18:04,795 : INFO : using serial LSI version on this node\n", "2022-05-30 11:18:04,796 : INFO : updating model with new documents\n", "2022-05-30 11:18:04,797 : INFO : preparing a new chunk of documents\n", "2022-05-30 11:18:04,798 : INFO : using 100 extra samples and 2 power iterations\n", "2022-05-30 11:18:04,798 : INFO : 1st phase: constructing (12, 102) action matrix\n", "2022-05-30 11:18:04,800 : INFO : orthonormalizing (12, 102) action matrix\n", "2022-05-30 11:18:04,803 : INFO : 2nd phase: running dense svd on (12, 9) matrix\n", "2022-05-30 11:18:04,803 : INFO : computing the final decomposition\n", "2022-05-30 11:18:04,804 : INFO : keeping 2 factors (discarding 43.156% of energy spectrum)\n", "2022-05-30 11:18:04,804 : INFO : processed documents up to #9\n", "2022-05-30 11:18:04,805 : INFO : topic #0(3.341): -0.644*\"system\" + -0.404*\"user\" + -0.301*\"eps\" + -0.265*\"response\" + -0.265*\"time\" + -0.240*\"computer\" + -0.221*\"human\" + -0.206*\"survey\" + -0.198*\"interface\" + -0.036*\"graph\"\n", "2022-05-30 11:18:04,806 : INFO : topic #1(2.542): 0.623*\"graph\" + 0.490*\"trees\" + 0.451*\"minors\" + 0.274*\"survey\" + -0.167*\"system\" + -0.141*\"eps\" + -0.113*\"human\" + 0.107*\"response\" + 0.107*\"time\" + -0.072*\"interface\"\n", "2022-05-30 11:18:04,806 : INFO : LsiModel lifecycle event {'msg': 'trained LsiModel in 0.01s', 'datetime': '2022-05-30T11:18:04.806885', 'gensim': '4.2.0', 'python': '3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 2022, 14:12:15) [MSC v.1929 64 bit (AMD64)]', 'platform': 'Windows-10-10.0.22000-SP0', 'event': 'created'}\n" ] } ], "source": [ "from gensim import models\n", "lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=2)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, -0.461821004532716), (1, -0.07002766527900031)]\n" ] } ], "source": [ "# Prepare the query\n", "\n", "doc = \"Human computer interaction\"\n", "vec_bow = dictionary.doc2bow(doc.lower().split())\n", "vec_lsi = lsi[vec_bow] # convert the query to LSI space\n", "print(vec_lsi)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-05-30 11:33:41,625 : WARNING : scanning corpus to determine the number of features (consider setting `num_features` explicitly)\n", "2022-05-30 11:33:41,626 : INFO : creating matrix with 9 documents and 2 features\n" ] } ], "source": [ "from gensim import similarities\n", "index = similarities.MatrixSimilarity(lsi[corpus])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[(0, 0.998093), (1, 0.93748635), (2, 0.9984453), (3, 0.9865886), (4, 0.90755945), (5, -0.12416792), (6, -0.10639259), (7, -0.09879464), (8, 0.050041765)]\n" ] } ], "source": [ "sims = index[vec_lsi]\n", "print(list(enumerate(sims)))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.9984453 The EPS user interface management system\n", "0.998093 Human machine interface for lab abc computer applications\n", "0.9865886 System and human system engineering testing of EPS\n", "0.93748635 A survey of user opinion of computer system response time\n", "0.90755945 Relation of user perceived response time to error measurement\n", "0.050041765 Graph minors A survey\n", "-0.09879464 Graph minors IV Widths of trees and well quasi ordering\n", "-0.10639259 The intersection graph of paths in trees\n", "-0.12416792 The generation of random binary unordered trees\n" ] } ], "source": [ "sims = sorted(enumerate(sims), key=lambda item: -item[1])\n", "for doc_position, doc_score in sims:\n", " print(doc_score, documents[doc_position])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "interpreter": { "hash": "a991b7e5a58af45663279ce1606e861d35361e78ec04a120e3cc987f7e474d97" }, "kernelspec": { "display_name": "Python 3.10.2 ('venv': venv)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }