You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
304 lines
6.7 KiB
Plaintext
304 lines
6.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Scrap System"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
" This is how I scrapped my website to make a database and then perform more relationships and make a better shearch box."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"```\n",
|
|
"[\n",
|
|
"{\n",
|
|
" \"Word#\": \"3\",\n",
|
|
" \"title\": \"Property\",\n",
|
|
" \"properties\": [\n",
|
|
" \"word\",\n",
|
|
" \"proposition\",\n",
|
|
" \"logic\"\n",
|
|
" ],\n",
|
|
" \"voices\": [\n",
|
|
" {\n",
|
|
" \"voice\": \"⤷ An attribute, characteristic, or quality\",\n",
|
|
" \"link\": \"link\"\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"voice\": \"⤷ From etymology the word comes from propert\",\n",
|
|
" \"link\":\"link\"\n",
|
|
" }\n",
|
|
" ]\n",
|
|
"}\n",
|
|
"]\n",
|
|
"```"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from bs4 import BeautifulSoup\n",
|
|
"import json"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open(\"index-data.html\") as file_in:\n",
|
|
" soup = BeautifulSoup(file_in, 'html.parser')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Define My GLossary Bag"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"glossary_bag = [] "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"jupyter": {
|
|
"outputs_hidden": true
|
|
},
|
|
"tags": []
|
|
},
|
|
"source": [
|
|
"TITLE"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"title = soup.find(id=\"title\").text"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### PROPERTIES"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"master_properties = [\n",
|
|
" {\n",
|
|
" 'title':'action',\n",
|
|
" 'symbol':'A',\n",
|
|
" 'color': 'var(--action-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'situation',\n",
|
|
" 'symbol':'S',\n",
|
|
" 'color': 'var(--situation-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'logic',\n",
|
|
" 'symbol':'C',\n",
|
|
" 'color': 'var(--logic-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'proposition',\n",
|
|
" 'symbol':'T',\n",
|
|
" 'color': 'var(--proposition-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'hyperlink',\n",
|
|
" 'symbol':'N',\n",
|
|
" 'color': 'var(--hyperlink-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'process',\n",
|
|
" 'symbol':'P',\n",
|
|
" 'color': 'var(--process-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'language',\n",
|
|
" 'symbol':'G',\n",
|
|
" 'color': 'var(--language-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'agent',\n",
|
|
" 'symbol':'E',\n",
|
|
" 'color': 'var(--agent-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'tool',\n",
|
|
" 'symbol':'T',\n",
|
|
" 'color': 'var(--tool-color)'\n",
|
|
" },\n",
|
|
" {\n",
|
|
" 'title':'form',\n",
|
|
" 'symbol':'Y',\n",
|
|
" 'color': 'var(--form-color)'\n",
|
|
" }\n",
|
|
"]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"title1 = [ {'title': title } ]\n",
|
|
"properties = [ {'properties' : master_properties } ]\n",
|
|
"\n",
|
|
"glossary_bag.append(title1)\n",
|
|
"glossary_bag.append(properties)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"source": [
|
|
"WORDS"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {
|
|
"tags": []
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"\n",
|
|
"word_no = 1\n",
|
|
"words = soup.find_all('div',attrs={'class':'word'})\n",
|
|
"glossary = []\n",
|
|
"\n",
|
|
"\n",
|
|
"for word in words:\n",
|
|
" \n",
|
|
" title = word.find('h1').text\n",
|
|
"\n",
|
|
" voices = word.find_all('p')\n",
|
|
" \n",
|
|
" links = word.find_all('a')\n",
|
|
" \n",
|
|
" properties = word.get('class')\n",
|
|
"\n",
|
|
" li_properties = []\n",
|
|
"\n",
|
|
" for prop in properties:\n",
|
|
" title_p = prop\n",
|
|
" for m_prop in master_properties:\n",
|
|
" if title_p == m_prop['title']:\n",
|
|
" symb = m_prop['symbol']\n",
|
|
" color = m_prop['color']\n",
|
|
" propert = {}\n",
|
|
" propert[\"title\"] = title_p\n",
|
|
" propert[\"symbol\"] = symb\n",
|
|
" propert[\"color\"] = color\n",
|
|
"\n",
|
|
" li_properties.append(propert)\n",
|
|
" \n",
|
|
" li_voices = []\n",
|
|
" \n",
|
|
" for voice in voices:\n",
|
|
" links = voice.find_all('a')\n",
|
|
" sentence = {}\n",
|
|
" sentence[\"voice\"]= voice.text.replace(\"⤴\",\"\")\n",
|
|
" if len(links) > 0:\n",
|
|
" sentence[\"link\"]= []\n",
|
|
" \n",
|
|
" for link in links:\n",
|
|
" url = link.get('href')\n",
|
|
" sentence[\"link\"].append(url)\n",
|
|
" \n",
|
|
" li_voices.append(sentence)\n",
|
|
" \n",
|
|
" word = {\n",
|
|
" 'Word#': str(word_no), \n",
|
|
" 'title': title, \n",
|
|
" 'properties': li_properties,\n",
|
|
" 'voices': li_voices,\n",
|
|
" }\n",
|
|
" \n",
|
|
" glossary.append(word)\n",
|
|
" \n",
|
|
" word_no += 1\n",
|
|
"\n",
|
|
"words = [ { 'words' : glossary } ]\n",
|
|
"\n",
|
|
"glossary_bag.append(words)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('glossary.json', 'w+', encoding='utf-8') as f:\n",
|
|
" json.dump(glossary_bag, f, indent=5, ensure_ascii=False)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"glossary_bag"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.3"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|