# Part 3 - Making new predictions import numpy as np from PIL import Image, ImageDraw, ImageFont from keras.preprocessing import image from keras.models import model_from_yaml from keras.preprocessing.image import ImageDataGenerator import argparse parser = argparse.ArgumentParser() parser.add_argument('images', nargs="*", help="images to classify") args = parser.parse_args() # load YAML and create model yaml_file = open('model.yaml', 'r') loaded_model_yaml = yaml_file.read() yaml_file.close() classifier = model_from_yaml(loaded_model_yaml) # load weights into new model classifier.load_weights("model.h5") print("Loaded model from disk") for f in args.images: from keras.preprocessing import image test_image = image.load_img(f, target_size = (64, 64)) test_image = image.img_to_array(test_image) test_image = np.expand_dims(test_image, axis = 0) result = classifier.predict(test_image) print(result) #WHAT ARE YOUR CLASSES? if result[0][0] == 1: prediction = 'rect' else: prediction = 'circle' print("PREDICTION: {}".format(prediction)) #WRITE RESULT TO IMAGE image = Image.open(f) width, height = image.size size = (width, height+100) layer = Image.new('RGB', size, (255,255,255)) layer.paste(image, (0,0)) draw = ImageDraw.Draw(layer) font = ImageFont.truetype('Roboto-Regular.ttf', size=45) (x, y) = (50, height+20) message = prediction color = 'rgb(0, 0, 0)' # black color draw.text((x, y), message, fill=color, font=font) layer.save("{}.predicted.png".format(f))