You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
79 lines
2.5 KiB
Python
79 lines
2.5 KiB
Python
6 years ago
|
# Convolutional Neural Network
|
||
|
|
||
|
# Installing Theano
|
||
|
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
|
||
|
|
||
|
# Installing Tensorflow
|
||
|
# pip install tensorflow
|
||
|
|
||
|
# Installing Keras
|
||
|
# pip install --upgrade keras
|
||
|
|
||
|
# Part 1 - Building the CNN
|
||
|
|
||
|
# Importing the Keras libraries and packages
|
||
|
|
||
|
from keras.models import Sequential
|
||
|
from keras.layers import Conv2D
|
||
|
from keras.layers import MaxPooling2D
|
||
|
from keras.layers import Flatten
|
||
|
from keras.layers import Dense
|
||
|
|
||
|
# Initialising the CNN
|
||
|
classifier = Sequential()
|
||
|
# Step 1 - Convolution
|
||
|
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
|
||
|
|
||
|
# Step 2 - Pooling
|
||
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||
|
|
||
|
# Adding a second convolutional layer
|
||
|
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
|
||
|
classifier.add(MaxPooling2D(pool_size = (2, 2)))
|
||
|
|
||
|
# Step 3 - Flattening
|
||
|
classifier.add(Flatten())
|
||
|
|
||
|
# Step 4 - Full connection
|
||
|
classifier.add(Dense(units = 128, activation = 'relu'))
|
||
|
classifier.add(Dense(units = 1, activation = 'sigmoid'))
|
||
|
|
||
|
# Compiling the CNN
|
||
|
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
|
||
|
|
||
|
# Part 2 - Fitting the CNN to the images
|
||
|
|
||
|
from keras.preprocessing.image import ImageDataGenerator
|
||
|
|
||
|
train_datagen = ImageDataGenerator(rescale = 1./255,
|
||
|
shear_range = 0.2,
|
||
|
zoom_range = 0.2,
|
||
|
horizontal_flip = True)
|
||
|
|
||
|
test_datagen = ImageDataGenerator(rescale = 1./255)
|
||
|
|
||
|
training_set = train_datagen.flow_from_directory('dataset/training_set',
|
||
|
target_size = (64, 64),
|
||
|
batch_size = 32,
|
||
|
class_mode = 'binary')
|
||
|
|
||
|
test_set = test_datagen.flow_from_directory('dataset/test_set',
|
||
|
target_size = (64, 64),
|
||
|
batch_size = 32,
|
||
|
class_mode = 'binary')
|
||
|
|
||
|
classifier.fit_generator(training_set,
|
||
|
steps_per_epoch = 500,
|
||
|
epochs = 1,
|
||
|
validation_data = test_set,
|
||
|
validation_steps = 100)
|
||
|
|
||
|
|
||
|
# serialize model to YAML
|
||
|
model_yaml = classifier.to_yaml()
|
||
|
with open("model.yaml", "w") as yaml_file:
|
||
|
yaml_file.write(model_yaml)
|
||
|
# serialize weights to HDF5
|
||
|
classifier.save_weights("model.h5")
|
||
|
print("Saved model to disk")
|