You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
162 lines
4.8 KiB
C++
162 lines
4.8 KiB
C++
#include <stdint.h>
|
|
#include <avr/interrupt.h>
|
|
#include <avr/io.h>
|
|
#include <avr/pgmspace.h>
|
|
|
|
#include "sample.h"
|
|
|
|
#define LED_PIN 13
|
|
#define SPEAKER_PIN 11
|
|
|
|
#define KNOB_1 (0)
|
|
#define KNOB_2 (1)
|
|
#define KNOB_3 (2)
|
|
#define INPUT_3 (3)
|
|
|
|
volatile uint16_t sample;
|
|
volatile uint16_t loop_start;
|
|
volatile uint16_t loop_length;
|
|
volatile uint16_t index_bounds;
|
|
volatile uint16_t loop_overflow;
|
|
|
|
volatile boolean gate;
|
|
volatile boolean gate_prev;
|
|
|
|
byte lastSample;
|
|
byte firstSample;
|
|
int forwardOrReverse;
|
|
|
|
void startPlayback()
|
|
{
|
|
pinMode(SPEAKER_PIN, OUTPUT);
|
|
|
|
// Set up Timer 2 to do pulse width modulation on the speaker pin.
|
|
// Use internal clock (datasheet p.160)
|
|
ASSR &= ~(_BV(EXCLK) | _BV(AS2));
|
|
|
|
// Set fast PWM mode (p.157)
|
|
TCCR2A |= _BV(WGM21) | _BV(WGM20);
|
|
TCCR2B &= ~_BV(WGM22);
|
|
|
|
// Do non-inverting PWM on pin OC2A (p.155)
|
|
// On the Arduino this is pin 11.
|
|
TCCR2A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0);
|
|
TCCR2A &= ~(_BV(COM2B1) | _BV(COM2B0));
|
|
// No prescaler (p.158)
|
|
TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
|
|
|
|
// Set initial pulse width to the first sample.
|
|
OCR2A = pgm_read_byte(&sound_data[0]);
|
|
|
|
// Set up Timer 1 to send a sample every interrupt.
|
|
cli();
|
|
|
|
// Set CTC mode (Clear Timer on Compare Match) (p.133)
|
|
// Have to set OCR1A *after*, otherwise it gets reset to 0!
|
|
TCCR1B = (TCCR1B & ~_BV(WGM13)) | _BV(WGM12);
|
|
TCCR1A = TCCR1A & ~(_BV(WGM11) | _BV(WGM10));
|
|
|
|
// No prescaler (p.134)
|
|
TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
|
|
|
|
// Set the compare register (OCR1A).
|
|
// OCR1A is a 16-bit register, so we have to do this with
|
|
// interrupts disabled to be safe.
|
|
OCR1A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000
|
|
|
|
// Enable interrupt when TCNT1 == OCR1A (p.136)
|
|
TIMSK1 |= _BV(OCIE1A);
|
|
|
|
lastSample = pgm_read_byte(&sound_data[sound_length - 1]);
|
|
firstSample = pgm_read_byte(&sound_data[sound_length]);
|
|
sample = 0;
|
|
sei();
|
|
}
|
|
|
|
void stopPlayback()
|
|
{
|
|
TIMSK1 &= ~_BV(OCIE1A); // Disable playback per-sample interrupt.
|
|
TCCR1B &= ~_BV(CS10); // Disable the per-sample timer completely.
|
|
TCCR2B &= ~_BV(CS10); // Disable the PWM timer.
|
|
digitalWrite(SPEAKER_PIN, LOW);
|
|
}
|
|
|
|
void setup()
|
|
{
|
|
// Serial.begin(9600);
|
|
// pinMode(LED_PIN, OUTPUT);
|
|
// digitalWrite(LED_PIN, HIGH);
|
|
|
|
forwardOrReverse = 600;
|
|
startPlayback();
|
|
|
|
loop_start = 0;
|
|
loop_length = sound_length;
|
|
gate = false;
|
|
gate_prev = false;
|
|
}
|
|
|
|
// This is called at 8000 Hz to load the next sample.
|
|
ISR(TIMER1_COMPA_vect)
|
|
{
|
|
if(sample >= index_bounds)
|
|
{
|
|
sample = loop_start;
|
|
}
|
|
else if((sample < loop_start) &&
|
|
(sample >= loop_overflow))
|
|
{
|
|
sample = loop_start;
|
|
}
|
|
else if((gate == true) &&
|
|
(gate_prev == false))
|
|
{
|
|
sample = loop_start;
|
|
}
|
|
else
|
|
{
|
|
if(forwardOrReverse < 500){ //analogread to slow messes with 'pitch timer'!?
|
|
//OCR2A = pgm_read_byte(&sound_data[(sample*(analogRead(KNOB_3)/100)) % sound_length]); // normal playback + 'pitch control (number of samples played percycl ish)'
|
|
OCR2A = pgm_read_byte(&sound_data[sample % sound_length]); // normal playback
|
|
//OCR2A = pgm_read_byte(&sound_data[sound_length - sample]); // reverse playback
|
|
//OCR2A = pgm_read_byte(&sound_data[sound_length % sample]); //backspin
|
|
}
|
|
if(forwardOrReverse > 500){
|
|
//OCR2A = pgm_read_byte(&sound_data[sample % sound_length]); // normal playback
|
|
//OCR2A = pgm_read_byte(&sound_data[sound_length - (sample*(analogRead(KNOB_3)/100))]); // reverse playback
|
|
OCR2A = pgm_read_byte(&sound_data[sound_length - sample]); // reverse playback
|
|
//OCR2A = pgm_read_byte(&sound_data[sound_length % sample]); //backspin
|
|
}
|
|
}
|
|
gate_prev = gate;
|
|
sample++; //just a counter, the 'playhead'
|
|
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
//loop_start = analogRead(KNOB_1) / 1024.0 * sound_length;
|
|
loop_start = 0;
|
|
|
|
loop_length = sound_length;
|
|
forwardOrReverse = analogRead(KNOB_1); //play reverse or not
|
|
// loop_length = (analogRead(KNOB_2) + 1) / 1024.0 * sound_length;
|
|
OCR1A = (512.0 / (analogRead(KNOB_3) + 1)) * (F_CPU / SAMPLE_RATE);// pitch control cpu speed div by samplerate
|
|
// OCR1A = 1; //pitch control >> ah for reversed playback this also has to be reversed some how!
|
|
//16e6 / 8000 = 2000
|
|
|
|
gate = analogRead(3) >> 9; // 10 bits in. gate < 512 == off, gate >= 512 == on
|
|
|
|
// can be up to 2x sound length. the more you know.
|
|
index_bounds = loop_start + loop_length;
|
|
// this will set the overflow length. take the loop overflow into account when checking the loop boundaries
|
|
if(index_bounds > sound_length)
|
|
{
|
|
loop_overflow = index_bounds - sound_length;
|
|
}
|
|
else
|
|
{
|
|
loop_overflow = 0;
|
|
}
|
|
}
|