// Chaos on Trigger #include #include #include #include #include "sample.h" #define LED_PIN 13 #define SPEAKER_PIN 11 #define KNOB_1 (0) #define KNOB_2 (1) #define KNOB_3 (2) #define INPUT3_PIN A3 // gate trigger volatile uint16_t sample; volatile uint16_t loop_start; volatile uint16_t loop_length; volatile uint16_t index_bounds; volatile uint16_t loop_overflow; volatile boolean gate; volatile boolean gate_prev; volatile boolean is_playing; volatile uint16_t time_since_gate; bool triggered; int i=0; byte lastSample; void startPlayback() { pinMode(SPEAKER_PIN, OUTPUT); // Set up Timer 2 to do pulse width modulation on the speaker pin. // Use internal clock (datasheet p.160) ASSR &= ~(_BV(EXCLK) | _BV(AS2)); // Set fast PWM mode (p.157) TCCR2A |= _BV(WGM21) | _BV(WGM20); TCCR2B &= ~_BV(WGM22); // Do non-inverting PWM on pin OC2A (p.155) // On the Arduino this is pin 11. TCCR2A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0); TCCR2A &= ~(_BV(COM2B1) | _BV(COM2B0)); // No prescaler (p.158) TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10); // Set initial pulse width to the first sample. OCR2A = pgm_read_byte(&sound_data[0]); // Set up Timer 1 to send a sample every interrupt. cli(); // Set CTC mode (Clear Timer on Compare Match) (p.133) // Have to set OCR1A *after*, otherwise it gets reset to 0! TCCR1B = (TCCR1B & ~_BV(WGM13)) | _BV(WGM12); TCCR1A = TCCR1A & ~(_BV(WGM11) | _BV(WGM10)); // No prescaler (p.134) TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10); // Set the compare register (OCR1A). // OCR1A is a 16-bit register, so we have to do this with // interrupts disabled to be safe. OCR1A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000 // Enable interrupt when TCNT1 == OCR1A (p.136) TIMSK1 |= _BV(OCIE1A); lastSample = pgm_read_byte(&sound_data[sound_length - 1]); sample = 0; sei(); } void stopPlayback() { TIMSK1 &= ~_BV(OCIE1A); // Disable playback per-sample interrupt. TCCR1B &= ~_BV(CS10); // Disable the per-sample timer completely. TCCR2B &= ~_BV(CS10); // Disable the PWM timer. digitalWrite(SPEAKER_PIN, LOW); } void setup() { pinMode(LED_PIN, OUTPUT); digitalWrite(LED_PIN, HIGH); startPlayback(); loop_start = 0; loop_length = sound_length; gate = false; gate_prev = false; is_playing = false; time_since_gate = 0; } // This is called at 8000 Hz to load the next sample. ISR(TIMER1_COMPA_vect) { if (gate == true && gate_prev == false) { time_since_gate = 0; sample = loop_start; is_playing = true; } gate_prev = gate; time_since_gate++; if (time_since_gate >= 8000 * 20) { is_playing = false; } if (is_playing) { OCR2A = pgm_read_byte(&sound_data[sample % sound_length]); sample++; if(sample >= index_bounds) { sample = loop_start; } else if((sample < loop_start) && (sample >= loop_overflow)) { sample = loop_start;} } else { OCR2A = pgm_read_byte(&sound_data[0]); } } void loop() { gate = analogRead(A3) << 9; if (gate && !triggered) { loop_start = random(0,1023) / 1024.0 * random(100,11461); delay(500); loop_length = (analogRead(KNOB_2) + 1) / 1024.0 * sound_length; OCR1A = (512.0 / (analogRead(KNOB_3) + 1)) * (F_CPU / SAMPLE_RATE); gate = analogRead(3) ; triggered=true; } else if(!gate && triggered) {triggered=false;} // can be up to 2x sound length. the more you know. index_bounds = loop_start + loop_length; //Serial.println(loop_length); // this will set the overflow length. take the loop overflow into account when checking the loop boundaries if(index_bounds > sound_length) { loop_overflow = index_bounds - sound_length; } else { loop_overflow = 0; } }