You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

265 lines
6.0 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NLTK - Frequency Distribution"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.nltk.org/book/ch01.html#frequency-distributions"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import nltk\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The symbols of computer control languages inevitably do have semantic connotations simply because there exist no symbols with which humans would not associate some meaning.\n",
"\n"
]
}
],
"source": [
"lines = open('txt/language.txt').readlines()\n",
"sentence = random.choice(lines)\n",
"print(sentence)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tokens"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['The', 'symbols', 'of', 'computer', 'control', 'languages', 'inevitably', 'do', 'have', 'semantic', 'connotations', 'simply', 'because', 'there', 'exist', 'no', 'symbols', 'with', 'which', 'humans', 'would', 'not', 'associate', 'some', 'meaning', '.']\n"
]
}
],
"source": [
"tokens = nltk.word_tokenize(sentence)\n",
"print(tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Frequency Distribution"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<FreqDist with 26 samples and 173 outcomes>\n"
]
}
],
"source": [
"# frequency of characters\n",
"fd = nltk.FreqDist(sentence)\n",
"print(fd)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(' ', 24), ('o', 15), ('e', 14), ('s', 14), ('n', 12), ('t', 11), ('a', 11), ('i', 10), ('m', 8), ('h', 7), ('l', 7), ('c', 7), ('u', 5), ('y', 4), ('b', 4), ('r', 3), ('g', 3), ('w', 3), ('p', 2), ('v', 2), ('d', 2), ('T', 1), ('f', 1), ('x', 1), ('.', 1), ('\\n', 1)]\n"
]
}
],
"source": [
"print(fd.most_common(50))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<FreqDist with 25 samples and 26 outcomes>\n"
]
}
],
"source": [
"# frequency of words\n",
"fd = nltk.FreqDist(tokens)\n",
"print(fd)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[('symbols', 2), ('The', 1), ('of', 1), ('computer', 1), ('control', 1), ('languages', 1), ('inevitably', 1), ('do', 1), ('have', 1), ('semantic', 1), ('connotations', 1), ('simply', 1), ('because', 1), ('there', 1), ('exist', 1), ('no', 1), ('with', 1), ('which', 1), ('humans', 1), ('would', 1), ('not', 1), ('associate', 1), ('some', 1), ('meaning', 1), ('.', 1)]\n"
]
}
],
"source": [
"print(fd.most_common(50))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<FreqDist with 944 samples and 2835 outcomes>\n"
]
}
],
"source": [
"# frequency of a text\n",
"txt = open('txt/language.txt').read()\n",
"tokens = nltk.word_tokenize(txt)\n",
"fd = nltk.FreqDist(tokens)\n",
"print(fd)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[(',', 172), ('.', 93), ('the', 88), ('of', 88), ('”', 66), ('“', 65), ('and', 61), ('a', 61), ('is', 58), ('languages', 54), ('in', 51), ('language', 47), ('to', 41), ('as', 37), ('computer', 32), ('that', 29), ('programming', 25), ('control', 23), ('are', 22), ('for', 21), ('', 21), ('The', 18), ('can', 17), ('be', 16), ('it', 16), ('machine', 16), ('human', 15), ('not', 15), ('software', 14), ('formal', 14), ('or', 14), ('symbols', 14), ('s', 12), ('with', 12), (':', 11), ('its', 11), ('this', 11), ('common', 11), ('their', 10), ('example', 9), (';', 9), ('operations', 9), ('such', 9), ('from', 8), ('through', 8), ('code', 8), ('since', 7), ('different', 7), ('In', 7), ('like', 7)]\n"
]
}
],
"source": [
"print(fd.most_common(50))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"47\n"
]
}
],
"source": [
"# Requesting the frequency of a specific word\n",
"print(fd['language'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}