You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
141 lines
5.1 KiB
Python
141 lines
5.1 KiB
Python
# Natural Language Toolkit: Simple Tokenizers
|
|
#
|
|
# Copyright (C) 2001-2019 NLTK Project
|
|
# Author: Edward Loper <edloper@gmail.com>
|
|
# Steven Bird <stevenbird1@gmail.com>
|
|
# URL: <http://nltk.sourceforge.net>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
r"""
|
|
Simple Tokenizers
|
|
|
|
These tokenizers divide strings into substrings using the string
|
|
``split()`` method.
|
|
When tokenizing using a particular delimiter string, use
|
|
the string ``split()`` method directly, as this is more efficient.
|
|
|
|
The simple tokenizers are *not* available as separate functions;
|
|
instead, you should just use the string ``split()`` method directly:
|
|
|
|
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
|
|
>>> s.split()
|
|
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.',
|
|
'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.']
|
|
>>> s.split(' ')
|
|
['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '',
|
|
'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.']
|
|
>>> s.split('\n')
|
|
['Good muffins cost $3.88', 'in New York. Please buy me',
|
|
'two of them.', '', 'Thanks.']
|
|
|
|
The simple tokenizers are mainly useful because they follow the
|
|
standard ``TokenizerI`` interface, and so can be used with any code
|
|
that expects a tokenizer. For example, these tokenizers can be used
|
|
to specify the tokenization conventions when building a `CorpusReader`.
|
|
|
|
"""
|
|
from __future__ import unicode_literals
|
|
from nltk.tokenize.api import TokenizerI, StringTokenizer
|
|
from nltk.tokenize.util import string_span_tokenize, regexp_span_tokenize
|
|
|
|
|
|
class SpaceTokenizer(StringTokenizer):
|
|
r"""Tokenize a string using the space character as a delimiter,
|
|
which is the same as ``s.split(' ')``.
|
|
|
|
>>> from nltk.tokenize import SpaceTokenizer
|
|
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
|
|
>>> SpaceTokenizer().tokenize(s)
|
|
['Good', 'muffins', 'cost', '$3.88\nin', 'New', 'York.', '',
|
|
'Please', 'buy', 'me\ntwo', 'of', 'them.\n\nThanks.']
|
|
"""
|
|
|
|
_string = ' '
|
|
|
|
|
|
class TabTokenizer(StringTokenizer):
|
|
r"""Tokenize a string use the tab character as a delimiter,
|
|
the same as ``s.split('\t')``.
|
|
|
|
>>> from nltk.tokenize import TabTokenizer
|
|
>>> TabTokenizer().tokenize('a\tb c\n\t d')
|
|
['a', 'b c\n', ' d']
|
|
"""
|
|
|
|
_string = '\t'
|
|
|
|
|
|
class CharTokenizer(StringTokenizer):
|
|
"""Tokenize a string into individual characters. If this functionality
|
|
is ever required directly, use ``for char in string``.
|
|
"""
|
|
|
|
def tokenize(self, s):
|
|
return list(s)
|
|
|
|
def span_tokenize(self, s):
|
|
for i, j in enumerate(range(1, len(s) + 1)):
|
|
yield i, j
|
|
|
|
|
|
class LineTokenizer(TokenizerI):
|
|
r"""Tokenize a string into its lines, optionally discarding blank lines.
|
|
This is similar to ``s.split('\n')``.
|
|
|
|
>>> from nltk.tokenize import LineTokenizer
|
|
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
|
|
>>> LineTokenizer(blanklines='keep').tokenize(s)
|
|
['Good muffins cost $3.88', 'in New York. Please buy me',
|
|
'two of them.', '', 'Thanks.']
|
|
>>> # same as [l for l in s.split('\n') if l.strip()]:
|
|
>>> LineTokenizer(blanklines='discard').tokenize(s)
|
|
['Good muffins cost $3.88', 'in New York. Please buy me',
|
|
'two of them.', 'Thanks.']
|
|
|
|
:param blanklines: Indicates how blank lines should be handled. Valid values are:
|
|
|
|
- ``discard``: strip blank lines out of the token list before returning it.
|
|
A line is considered blank if it contains only whitespace characters.
|
|
- ``keep``: leave all blank lines in the token list.
|
|
- ``discard-eof``: if the string ends with a newline, then do not generate
|
|
a corresponding token ``''`` after that newline.
|
|
"""
|
|
|
|
def __init__(self, blanklines='discard'):
|
|
valid_blanklines = ('discard', 'keep', 'discard-eof')
|
|
if blanklines not in valid_blanklines:
|
|
raise ValueError(
|
|
'Blank lines must be one of: %s' % ' '.join(valid_blanklines)
|
|
)
|
|
|
|
self._blanklines = blanklines
|
|
|
|
def tokenize(self, s):
|
|
lines = s.splitlines()
|
|
# If requested, strip off blank lines.
|
|
if self._blanklines == 'discard':
|
|
lines = [l for l in lines if l.rstrip()]
|
|
elif self._blanklines == 'discard-eof':
|
|
if lines and not lines[-1].strip():
|
|
lines.pop()
|
|
return lines
|
|
|
|
# discard-eof not implemented
|
|
def span_tokenize(self, s):
|
|
if self._blanklines == 'keep':
|
|
for span in string_span_tokenize(s, r'\n'):
|
|
yield span
|
|
else:
|
|
for span in regexp_span_tokenize(s, r'\n(\s+\n)*'):
|
|
yield span
|
|
|
|
|
|
######################################################################
|
|
# { Tokenization Functions
|
|
######################################################################
|
|
# XXX: it is stated in module docs that there is no function versions
|
|
|
|
|
|
def line_tokenize(text, blanklines='discard'):
|
|
return LineTokenizer(blanklines).tokenize(text)
|