You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
156 lines
8.0 KiB
Python
156 lines
8.0 KiB
Python
# -*- coding: utf-8 -*-
|
|
# Natural Language Toolkit: Interface to the Repp Tokenizer
|
|
#
|
|
# Copyright (C) 2001-2015 NLTK Project
|
|
# Authors: Rebecca Dridan and Stephan Oepen
|
|
# Contributors: Liling Tan
|
|
#
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
from __future__ import unicode_literals, print_function
|
|
|
|
import os
|
|
import re
|
|
import sys
|
|
import subprocess
|
|
import tempfile
|
|
|
|
from six import text_type
|
|
|
|
from nltk.data import ZipFilePathPointer
|
|
from nltk.internals import find_dir
|
|
|
|
from nltk.tokenize.api import TokenizerI
|
|
|
|
|
|
class ReppTokenizer(TokenizerI):
|
|
"""
|
|
A class for word tokenization using the REPP parser described in
|
|
Rebecca Dridan and Stephan Oepen (2012) Tokenization: Returning to a
|
|
Long Solved Problem - A Survey, Contrastive Experiment, Recommendations,
|
|
and Toolkit. In ACL. http://anthology.aclweb.org/P/P12/P12-2.pdf#page=406
|
|
|
|
>>> sents = ['Tokenization is widely regarded as a solved problem due to the high accuracy that rulebased tokenizers achieve.' ,
|
|
... 'But rule-based tokenizers are hard to maintain and their rules language specific.' ,
|
|
... 'We evaluated our method on three languages and obtained error rates of 0.27% (English), 0.35% (Dutch) and 0.76% (Italian) for our best models.'
|
|
... ]
|
|
>>> tokenizer = ReppTokenizer('/home/alvas/repp/') # doctest: +SKIP
|
|
>>> for sent in sents: # doctest: +SKIP
|
|
... tokenizer.tokenize(sent) # doctest: +SKIP
|
|
...
|
|
(u'Tokenization', u'is', u'widely', u'regarded', u'as', u'a', u'solved', u'problem', u'due', u'to', u'the', u'high', u'accuracy', u'that', u'rulebased', u'tokenizers', u'achieve', u'.')
|
|
(u'But', u'rule-based', u'tokenizers', u'are', u'hard', u'to', u'maintain', u'and', u'their', u'rules', u'language', u'specific', u'.')
|
|
(u'We', u'evaluated', u'our', u'method', u'on', u'three', u'languages', u'and', u'obtained', u'error', u'rates', u'of', u'0.27', u'%', u'(', u'English', u')', u',', u'0.35', u'%', u'(', u'Dutch', u')', u'and', u'0.76', u'%', u'(', u'Italian', u')', u'for', u'our', u'best', u'models', u'.')
|
|
|
|
>>> for sent in tokenizer.tokenize_sents(sents): # doctest: +SKIP
|
|
... print sent # doctest: +SKIP
|
|
...
|
|
(u'Tokenization', u'is', u'widely', u'regarded', u'as', u'a', u'solved', u'problem', u'due', u'to', u'the', u'high', u'accuracy', u'that', u'rulebased', u'tokenizers', u'achieve', u'.')
|
|
(u'But', u'rule-based', u'tokenizers', u'are', u'hard', u'to', u'maintain', u'and', u'their', u'rules', u'language', u'specific', u'.')
|
|
(u'We', u'evaluated', u'our', u'method', u'on', u'three', u'languages', u'and', u'obtained', u'error', u'rates', u'of', u'0.27', u'%', u'(', u'English', u')', u',', u'0.35', u'%', u'(', u'Dutch', u')', u'and', u'0.76', u'%', u'(', u'Italian', u')', u'for', u'our', u'best', u'models', u'.')
|
|
>>> for sent in tokenizer.tokenize_sents(sents, keep_token_positions=True): # doctest: +SKIP
|
|
... print sent # doctest: +SKIP
|
|
...
|
|
[(u'Tokenization', 0, 12), (u'is', 13, 15), (u'widely', 16, 22), (u'regarded', 23, 31), (u'as', 32, 34), (u'a', 35, 36), (u'solved', 37, 43), (u'problem', 44, 51), (u'due', 52, 55), (u'to', 56, 58), (u'the', 59, 62), (u'high', 63, 67), (u'accuracy', 68, 76), (u'that', 77, 81), (u'rulebased', 82, 91), (u'tokenizers', 92, 102), (u'achieve', 103, 110), (u'.', 110, 111)]
|
|
[(u'But', 0, 3), (u'rule-based', 4, 14), (u'tokenizers', 15, 25), (u'are', 26, 29), (u'hard', 30, 34), (u'to', 35, 37), (u'maintain', 38, 46), (u'and', 47, 50), (u'their', 51, 56), (u'rules', 57, 62), (u'language', 63, 71), (u'specific', 72, 80), (u'.', 80, 81)]
|
|
[(u'We', 0, 2), (u'evaluated', 3, 12), (u'our', 13, 16), (u'method', 17, 23), (u'on', 24, 26), (u'three', 27, 32), (u'languages', 33, 42), (u'and', 43, 46), (u'obtained', 47, 55), (u'error', 56, 61), (u'rates', 62, 67), (u'of', 68, 70), (u'0.27', 71, 75), (u'%', 75, 76), (u'(', 77, 78), (u'English', 78, 85), (u')', 85, 86), (u',', 86, 87), (u'0.35', 88, 92), (u'%', 92, 93), (u'(', 94, 95), (u'Dutch', 95, 100), (u')', 100, 101), (u'and', 102, 105), (u'0.76', 106, 110), (u'%', 110, 111), (u'(', 112, 113), (u'Italian', 113, 120), (u')', 120, 121), (u'for', 122, 125), (u'our', 126, 129), (u'best', 130, 134), (u'models', 135, 141), (u'.', 141, 142)]
|
|
"""
|
|
|
|
def __init__(self, repp_dir, encoding='utf8'):
|
|
self.repp_dir = self.find_repptokenizer(repp_dir)
|
|
# Set a directory to store the temporary files.
|
|
self.working_dir = tempfile.gettempdir()
|
|
# Set an encoding for the input strings.
|
|
self.encoding = encoding
|
|
|
|
def tokenize(self, sentence):
|
|
"""
|
|
Use Repp to tokenize a single sentence.
|
|
|
|
:param sentence: A single sentence string.
|
|
:type sentence: str
|
|
:return: A tuple of tokens.
|
|
:rtype: tuple(str)
|
|
"""
|
|
return next(self.tokenize_sents([sentence]))
|
|
|
|
def tokenize_sents(self, sentences, keep_token_positions=False):
|
|
"""
|
|
Tokenize multiple sentences using Repp.
|
|
|
|
:param sentences: A list of sentence strings.
|
|
:type sentences: list(str)
|
|
:return: A list of tuples of tokens
|
|
:rtype: iter(tuple(str))
|
|
"""
|
|
with tempfile.NamedTemporaryFile(
|
|
prefix='repp_input.', dir=self.working_dir, mode='w', delete=False
|
|
) as input_file:
|
|
# Write sentences to temporary input file.
|
|
for sent in sentences:
|
|
input_file.write(text_type(sent) + '\n')
|
|
input_file.close()
|
|
# Generate command to run REPP.
|
|
cmd = self.generate_repp_command(input_file.name)
|
|
# Decode the stdout and strips the ending newline.
|
|
repp_output = self._execute(cmd).decode(self.encoding).strip()
|
|
for tokenized_sent in self.parse_repp_outputs(repp_output):
|
|
if not keep_token_positions:
|
|
# Removes token position information.
|
|
tokenized_sent, starts, ends = zip(*tokenized_sent)
|
|
yield tokenized_sent
|
|
|
|
def generate_repp_command(self, inputfilename):
|
|
"""
|
|
This module generates the REPP command to be used at the terminal.
|
|
|
|
:param inputfilename: path to the input file
|
|
:type inputfilename: str
|
|
"""
|
|
cmd = [self.repp_dir + '/src/repp']
|
|
cmd += ['-c', self.repp_dir + '/erg/repp.set']
|
|
cmd += ['--format', 'triple']
|
|
cmd += [inputfilename]
|
|
return cmd
|
|
|
|
@staticmethod
|
|
def _execute(cmd):
|
|
p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
|
stdout, stderr = p.communicate()
|
|
return stdout
|
|
|
|
@staticmethod
|
|
def parse_repp_outputs(repp_output):
|
|
"""
|
|
This module parses the tri-tuple format that REPP outputs using the
|
|
"--format triple" option and returns an generator with tuple of string
|
|
tokens.
|
|
|
|
:param repp_output:
|
|
:type repp_output: type
|
|
:return: an iterable of the tokenized sentences as tuples of strings
|
|
:rtype: iter(tuple)
|
|
"""
|
|
line_regex = re.compile('^\((\d+), (\d+), (.+)\)$', re.MULTILINE)
|
|
for section in repp_output.split('\n\n'):
|
|
words_with_positions = [
|
|
(token, int(start), int(end))
|
|
for start, end, token in line_regex.findall(section)
|
|
]
|
|
words = tuple(t[2] for t in words_with_positions)
|
|
yield words_with_positions
|
|
|
|
def find_repptokenizer(self, repp_dirname):
|
|
"""
|
|
A module to find REPP tokenizer binary and its *repp.set* config file.
|
|
"""
|
|
if os.path.exists(repp_dirname): # If a full path is given.
|
|
_repp_dir = repp_dirname
|
|
else: # Try to find path to REPP directory in environment variables.
|
|
_repp_dir = find_dir(repp_dirname, env_vars=('REPP_TOKENIZER',))
|
|
# Checks for the REPP binary and erg/repp.set config file.
|
|
assert os.path.exists(_repp_dir + '/src/repp')
|
|
assert os.path.exists(_repp_dir + '/erg/repp.set')
|
|
return _repp_dir
|