You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
224 lines
7.8 KiB
Python
224 lines
7.8 KiB
Python
# Natural Language Toolkit: Tokenizers
|
|
#
|
|
# Copyright (C) 2001-2019 NLTK Project
|
|
# Author: Edward Loper <edloper@gmail.com>
|
|
# Steven Bird <stevenbird1@gmail.com>
|
|
# Trevor Cohn <tacohn@csse.unimelb.edu.au>
|
|
# URL: <http://nltk.sourceforge.net>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
r"""
|
|
Regular-Expression Tokenizers
|
|
|
|
A ``RegexpTokenizer`` splits a string into substrings using a regular expression.
|
|
For example, the following tokenizer forms tokens out of alphabetic sequences,
|
|
money expressions, and any other non-whitespace sequences:
|
|
|
|
>>> from nltk.tokenize import RegexpTokenizer
|
|
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
|
|
>>> tokenizer = RegexpTokenizer('\w+|\$[\d\.]+|\S+')
|
|
>>> tokenizer.tokenize(s)
|
|
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York', '.',
|
|
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
|
|
|
|
A ``RegexpTokenizer`` can use its regexp to match delimiters instead:
|
|
|
|
>>> tokenizer = RegexpTokenizer('\s+', gaps=True)
|
|
>>> tokenizer.tokenize(s)
|
|
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.',
|
|
'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.']
|
|
|
|
Note that empty tokens are not returned when the delimiter appears at
|
|
the start or end of the string.
|
|
|
|
The material between the tokens is discarded. For example,
|
|
the following tokenizer selects just the capitalized words:
|
|
|
|
>>> capword_tokenizer = RegexpTokenizer('[A-Z]\w+')
|
|
>>> capword_tokenizer.tokenize(s)
|
|
['Good', 'New', 'York', 'Please', 'Thanks']
|
|
|
|
This module contains several subclasses of ``RegexpTokenizer``
|
|
that use pre-defined regular expressions.
|
|
|
|
>>> from nltk.tokenize import BlanklineTokenizer
|
|
>>> # Uses '\s*\n\s*\n\s*':
|
|
>>> BlanklineTokenizer().tokenize(s)
|
|
['Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.',
|
|
'Thanks.']
|
|
|
|
All of the regular expression tokenizers are also available as functions:
|
|
|
|
>>> from nltk.tokenize import regexp_tokenize, wordpunct_tokenize, blankline_tokenize
|
|
>>> regexp_tokenize(s, pattern='\w+|\$[\d\.]+|\S+')
|
|
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York', '.',
|
|
'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
|
|
>>> wordpunct_tokenize(s)
|
|
['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York',
|
|
'.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
|
|
>>> blankline_tokenize(s)
|
|
['Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.', 'Thanks.']
|
|
|
|
Caution: The function ``regexp_tokenize()`` takes the text as its
|
|
first argument, and the regular expression pattern as its second
|
|
argument. This differs from the conventions used by Python's
|
|
``re`` functions, where the pattern is always the first argument.
|
|
(This is for consistency with the other NLTK tokenizers.)
|
|
"""
|
|
from __future__ import unicode_literals
|
|
|
|
import re
|
|
|
|
from nltk.tokenize.api import TokenizerI
|
|
from nltk.tokenize.util import regexp_span_tokenize
|
|
from nltk.compat import python_2_unicode_compatible
|
|
|
|
|
|
@python_2_unicode_compatible
|
|
class RegexpTokenizer(TokenizerI):
|
|
"""
|
|
A tokenizer that splits a string using a regular expression, which
|
|
matches either the tokens or the separators between tokens.
|
|
|
|
>>> tokenizer = RegexpTokenizer('\w+|\$[\d\.]+|\S+')
|
|
|
|
:type pattern: str
|
|
:param pattern: The pattern used to build this tokenizer.
|
|
(This pattern must not contain capturing parentheses;
|
|
Use non-capturing parentheses, e.g. (?:...), instead)
|
|
:type gaps: bool
|
|
:param gaps: True if this tokenizer's pattern should be used
|
|
to find separators between tokens; False if this
|
|
tokenizer's pattern should be used to find the tokens
|
|
themselves.
|
|
:type discard_empty: bool
|
|
:param discard_empty: True if any empty tokens `''`
|
|
generated by the tokenizer should be discarded. Empty
|
|
tokens can only be generated if `_gaps == True`.
|
|
:type flags: int
|
|
:param flags: The regexp flags used to compile this
|
|
tokenizer's pattern. By default, the following flags are
|
|
used: `re.UNICODE | re.MULTILINE | re.DOTALL`.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
pattern,
|
|
gaps=False,
|
|
discard_empty=True,
|
|
flags=re.UNICODE | re.MULTILINE | re.DOTALL,
|
|
):
|
|
# If they gave us a regexp object, extract the pattern.
|
|
pattern = getattr(pattern, 'pattern', pattern)
|
|
|
|
self._pattern = pattern
|
|
self._gaps = gaps
|
|
self._discard_empty = discard_empty
|
|
self._flags = flags
|
|
self._regexp = None
|
|
|
|
def _check_regexp(self):
|
|
if self._regexp is None:
|
|
self._regexp = re.compile(self._pattern, self._flags)
|
|
|
|
def tokenize(self, text):
|
|
self._check_regexp()
|
|
# If our regexp matches gaps, use re.split:
|
|
if self._gaps:
|
|
if self._discard_empty:
|
|
return [tok for tok in self._regexp.split(text) if tok]
|
|
else:
|
|
return self._regexp.split(text)
|
|
|
|
# If our regexp matches tokens, use re.findall:
|
|
else:
|
|
return self._regexp.findall(text)
|
|
|
|
def span_tokenize(self, text):
|
|
self._check_regexp()
|
|
|
|
if self._gaps:
|
|
for left, right in regexp_span_tokenize(text, self._regexp):
|
|
if not (self._discard_empty and left == right):
|
|
yield left, right
|
|
else:
|
|
for m in re.finditer(self._regexp, text):
|
|
yield m.span()
|
|
|
|
def __repr__(self):
|
|
return '%s(pattern=%r, gaps=%r, discard_empty=%r, flags=%r)' % (
|
|
self.__class__.__name__,
|
|
self._pattern,
|
|
self._gaps,
|
|
self._discard_empty,
|
|
self._flags,
|
|
)
|
|
|
|
|
|
class WhitespaceTokenizer(RegexpTokenizer):
|
|
r"""
|
|
Tokenize a string on whitespace (space, tab, newline).
|
|
In general, users should use the string ``split()`` method instead.
|
|
|
|
>>> from nltk.tokenize import WhitespaceTokenizer
|
|
>>> s = "Good muffins cost $3.88\nin New York. Please buy me\ntwo of them.\n\nThanks."
|
|
>>> WhitespaceTokenizer().tokenize(s)
|
|
['Good', 'muffins', 'cost', '$3.88', 'in', 'New', 'York.',
|
|
'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks.']
|
|
"""
|
|
|
|
def __init__(self):
|
|
RegexpTokenizer.__init__(self, r'\s+', gaps=True)
|
|
|
|
|
|
class BlanklineTokenizer(RegexpTokenizer):
|
|
"""
|
|
Tokenize a string, treating any sequence of blank lines as a delimiter.
|
|
Blank lines are defined as lines containing no characters, except for
|
|
space or tab characters.
|
|
"""
|
|
|
|
def __init__(self):
|
|
RegexpTokenizer.__init__(self, r'\s*\n\s*\n\s*', gaps=True)
|
|
|
|
|
|
class WordPunctTokenizer(RegexpTokenizer):
|
|
"""
|
|
Tokenize a text into a sequence of alphabetic and
|
|
non-alphabetic characters, using the regexp ``\w+|[^\w\s]+``.
|
|
|
|
>>> from nltk.tokenize import WordPunctTokenizer
|
|
>>> s = "Good muffins cost $3.88\\nin New York. Please buy me\\ntwo of them.\\n\\nThanks."
|
|
>>> WordPunctTokenizer().tokenize(s)
|
|
['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York',
|
|
'.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
|
|
"""
|
|
|
|
def __init__(self):
|
|
RegexpTokenizer.__init__(self, r'\w+|[^\w\s]+')
|
|
|
|
|
|
######################################################################
|
|
# { Tokenization Functions
|
|
######################################################################
|
|
|
|
|
|
def regexp_tokenize(
|
|
text,
|
|
pattern,
|
|
gaps=False,
|
|
discard_empty=True,
|
|
flags=re.UNICODE | re.MULTILINE | re.DOTALL,
|
|
):
|
|
"""
|
|
Return a tokenized copy of *text*. See :class:`.RegexpTokenizer`
|
|
for descriptions of the arguments.
|
|
"""
|
|
tokenizer = RegexpTokenizer(pattern, gaps, discard_empty, flags)
|
|
return tokenizer.tokenize(text)
|
|
|
|
|
|
blankline_tokenize = BlanklineTokenizer().tokenize
|
|
wordpunct_tokenize = WordPunctTokenizer().tokenize
|