You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
3.7 KiB
Python
121 lines
3.7 KiB
Python
# Multi-Word Expression tokenizer
|
|
#
|
|
# Copyright (C) 2001-2019 NLTK Project
|
|
# Author: Rob Malouf <rmalouf@mail.sdsu.edu>
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
"""
|
|
Multi-Word Expression Tokenizer
|
|
|
|
A ``MWETokenizer`` takes a string which has already been divided into tokens and
|
|
retokenizes it, merging multi-word expressions into single tokens, using a lexicon
|
|
of MWEs:
|
|
|
|
|
|
>>> from nltk.tokenize import MWETokenizer
|
|
|
|
>>> tokenizer = MWETokenizer([('a', 'little'), ('a', 'little', 'bit'), ('a', 'lot')])
|
|
>>> tokenizer.add_mwe(('in', 'spite', 'of'))
|
|
|
|
>>> tokenizer.tokenize('Testing testing testing one two three'.split())
|
|
['Testing', 'testing', 'testing', 'one', 'two', 'three']
|
|
|
|
>>> tokenizer.tokenize('This is a test in spite'.split())
|
|
['This', 'is', 'a', 'test', 'in', 'spite']
|
|
|
|
>>> tokenizer.tokenize('In a little or a little bit or a lot in spite of'.split())
|
|
['In', 'a_little', 'or', 'a_little_bit', 'or', 'a_lot', 'in_spite_of']
|
|
|
|
"""
|
|
from nltk.util import Trie
|
|
|
|
from nltk.tokenize.api import TokenizerI
|
|
|
|
|
|
class MWETokenizer(TokenizerI):
|
|
"""A tokenizer that processes tokenized text and merges multi-word expressions
|
|
into single tokens.
|
|
"""
|
|
|
|
def __init__(self, mwes=None, separator='_'):
|
|
"""Initialize the multi-word tokenizer with a list of expressions and a
|
|
separator
|
|
|
|
:type mwes: list(list(str))
|
|
:param mwes: A sequence of multi-word expressions to be merged, where
|
|
each MWE is a sequence of strings.
|
|
:type separator: str
|
|
:param separator: String that should be inserted between words in a multi-word
|
|
expression token. (Default is '_')
|
|
|
|
"""
|
|
if not mwes:
|
|
mwes = []
|
|
self._mwes = Trie(mwes)
|
|
self._separator = separator
|
|
|
|
def add_mwe(self, mwe):
|
|
"""Add a multi-word expression to the lexicon (stored as a word trie)
|
|
|
|
We use ``util.Trie`` to represent the trie. Its form is a dict of dicts.
|
|
The key True marks the end of a valid MWE.
|
|
|
|
:param mwe: The multi-word expression we're adding into the word trie
|
|
:type mwe: tuple(str) or list(str)
|
|
|
|
:Example:
|
|
|
|
>>> tokenizer = MWETokenizer()
|
|
>>> tokenizer.add_mwe(('a', 'b'))
|
|
>>> tokenizer.add_mwe(('a', 'b', 'c'))
|
|
>>> tokenizer.add_mwe(('a', 'x'))
|
|
>>> expected = {'a': {'x': {True: None}, 'b': {True: None, 'c': {True: None}}}}
|
|
>>> tokenizer._mwes == expected
|
|
True
|
|
|
|
"""
|
|
self._mwes.insert(mwe)
|
|
|
|
def tokenize(self, text):
|
|
"""
|
|
|
|
:param text: A list containing tokenized text
|
|
:type text: list(str)
|
|
:return: A list of the tokenized text with multi-words merged together
|
|
:rtype: list(str)
|
|
|
|
:Example:
|
|
|
|
>>> tokenizer = MWETokenizer([('hors', "d'oeuvre")], separator='+')
|
|
>>> tokenizer.tokenize("An hors d'oeuvre tonight, sir?".split())
|
|
['An', "hors+d'oeuvre", 'tonight,', 'sir?']
|
|
|
|
"""
|
|
i = 0
|
|
n = len(text)
|
|
result = []
|
|
|
|
while i < n:
|
|
if text[i] in self._mwes:
|
|
# possible MWE match
|
|
j = i
|
|
trie = self._mwes
|
|
while j < n and text[j] in trie:
|
|
trie = trie[text[j]]
|
|
j = j + 1
|
|
else:
|
|
if Trie.LEAF in trie:
|
|
# success!
|
|
result.append(self._separator.join(text[i:j]))
|
|
i = j
|
|
else:
|
|
# no match, so backtrack
|
|
result.append(text[i])
|
|
i += 1
|
|
else:
|
|
result.append(text[i])
|
|
i += 1
|
|
|
|
return result
|