You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

305 lines
8.6 KiB
Plaintext

.. Copyright (C) 2001-2019 NLTK Project
.. For license information, see LICENSE.TXT
===========
Probability
===========
>>> import nltk
>>> from nltk.probability import *
FreqDist
--------
>>> text1 = ['no', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '!']
>>> text2 = ['no', 'good', 'porpoise', 'likes', 'to', 'fish', 'fish', 'anywhere', '.']
>>> fd1 = nltk.FreqDist(text1)
>>> fd1 == nltk.FreqDist(text1)
True
Note that items are sorted in order of decreasing frequency; two items of the same frequency appear in indeterminate order.
>>> import itertools
>>> both = nltk.FreqDist(text1 + text2)
>>> both_most_common = both.most_common()
>>> list(itertools.chain(*(sorted(ys) for k, ys in itertools.groupby(both_most_common, key=lambda t: t[1]))))
[('fish', 3), ('anywhere', 2), ('good', 2), ('no', 2), ('porpoise', 2), ('!', 1), ('.', 1), ('a', 1), ('goes', 1), ('likes', 1), ('to', 1), ('without', 1)]
>>> both == fd1 + nltk.FreqDist(text2)
True
>>> fd1 == nltk.FreqDist(text1) # But fd1 is unchanged
True
>>> fd2 = nltk.FreqDist(text2)
>>> fd1.update(fd2)
>>> fd1 == both
True
>>> fd1 = nltk.FreqDist(text1)
>>> fd1.update(text2)
>>> fd1 == both
True
>>> fd1 = nltk.FreqDist(text1)
>>> fd2 = nltk.FreqDist(fd1)
>>> fd2 == fd1
True
``nltk.FreqDist`` can be pickled:
>>> import pickle
>>> fd1 = nltk.FreqDist(text1)
>>> pickled = pickle.dumps(fd1)
>>> fd1 == pickle.loads(pickled)
True
Mathematical operations:
>>> FreqDist('abbb') + FreqDist('bcc')
FreqDist({'b': 4, 'c': 2, 'a': 1})
>>> FreqDist('abbbc') - FreqDist('bccd')
FreqDist({'b': 2, 'a': 1})
>>> FreqDist('abbb') | FreqDist('bcc')
FreqDist({'b': 3, 'c': 2, 'a': 1})
>>> FreqDist('abbb') & FreqDist('bcc')
FreqDist({'b': 1})
ConditionalFreqDist
-------------------
>>> cfd1 = ConditionalFreqDist()
>>> cfd1[1] = FreqDist('abbbb')
>>> cfd1[2] = FreqDist('xxxxyy')
>>> cfd1
<ConditionalFreqDist with 2 conditions>
>>> cfd2 = ConditionalFreqDist()
>>> cfd2[1] = FreqDist('bbccc')
>>> cfd2[2] = FreqDist('xxxyyyzz')
>>> cfd2[3] = FreqDist('m')
>>> cfd2
<ConditionalFreqDist with 3 conditions>
>>> r = cfd1 + cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 6, 'c': 3, 'a': 1})), (2, FreqDist({'x': 7, 'y': 5, 'z': 2})), (3, FreqDist({'m': 1}))]
>>> r = cfd1 - cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 2, 'a': 1})), (2, FreqDist({'x': 1}))]
>>> r = cfd1 | cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 4, 'c': 3, 'a': 1})), (2, FreqDist({'x': 4, 'y': 3, 'z': 2})), (3, FreqDist({'m': 1}))]
>>> r = cfd1 & cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 2})), (2, FreqDist({'x': 3, 'y': 2}))]
Testing some HMM estimators
---------------------------
We extract a small part (500 sentences) of the Brown corpus
>>> corpus = nltk.corpus.brown.tagged_sents(categories='adventure')[:500]
>>> print(len(corpus))
500
We create a HMM trainer - note that we need the tags and symbols
from the whole corpus, not just the training corpus
>>> from nltk.util import unique_list
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
>>> print(len(tag_set))
92
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
>>> print(len(symbols))
1464
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
We divide the corpus into 90% training and 10% testing
>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
... if i % 10:
... train_corpus += [corpus[i]]
... else:
... test_corpus += [corpus[i]]
>>> print(len(train_corpus))
450
>>> print(len(test_corpus))
50
And now we can test the estimators
>>> def train_and_test(est):
... hmm = trainer.train_supervised(train_corpus, estimator=est)
... print('%.2f%%' % (100 * hmm.evaluate(test_corpus)))
Maximum Likelihood Estimation
-----------------------------
- this resulted in an initialization error before r7209
>>> mle = lambda fd, bins: MLEProbDist(fd)
>>> train_and_test(mle)
22.75%
Laplace (= Lidstone with gamma==1)
>>> train_and_test(LaplaceProbDist)
66.04%
Expected Likelihood Estimation (= Lidstone with gamma==0.5)
>>> train_and_test(ELEProbDist)
73.01%
Lidstone Estimation, for gamma==0.1, 0.5 and 1
(the later two should be exactly equal to MLE and ELE above)
>>> def lidstone(gamma):
... return lambda fd, bins: LidstoneProbDist(fd, gamma, bins)
>>> train_and_test(lidstone(0.1))
82.51%
>>> train_and_test(lidstone(0.5))
73.01%
>>> train_and_test(lidstone(1.0))
66.04%
Witten Bell Estimation
----------------------
- This resulted in ZeroDivisionError before r7209
>>> train_and_test(WittenBellProbDist)
88.12%
Good Turing Estimation
>>> gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5)
>>> train_and_test(gt)
86.93%
Kneser Ney Estimation
---------------------
Since the Kneser-Ney distribution is best suited for trigrams, we must adjust
our testing accordingly.
>>> corpus = [[((x[0],y[0],z[0]),(x[1],y[1],z[1]))
... for x, y, z in nltk.trigrams(sent)]
... for sent in corpus[:100]]
We will then need to redefine the rest of the training/testing variables
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
>>> len(tag_set)
906
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
>>> len(symbols)
1341
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
... if i % 10:
... train_corpus += [corpus[i]]
... else:
... test_corpus += [corpus[i]]
>>> len(train_corpus)
90
>>> len(test_corpus)
10
>>> kn = lambda fd, bins: KneserNeyProbDist(fd)
>>> train_and_test(kn)
0.86%
Remains to be added:
- Tests for HeldoutProbDist, CrossValidationProbDist and MutableProbDist
Squashed bugs
-------------
Issue 511: override pop and popitem to invalidate the cache
>>> fd = nltk.FreqDist('a')
>>> list(fd.keys())
['a']
>>> fd.pop('a')
1
>>> list(fd.keys())
[]
Issue 533: access cumulative frequencies with no arguments
>>> fd = nltk.FreqDist('aab')
>>> list(fd._cumulative_frequencies(['a']))
[2.0]
>>> list(fd._cumulative_frequencies(['a', 'b']))
[2.0, 3.0]
Issue 579: override clear to reset some variables
>>> fd = FreqDist('aab')
>>> fd.clear()
>>> fd.N()
0
Issue 351: fix fileids method of CategorizedCorpusReader to inadvertently
add errant categories
>>> from nltk.corpus import brown
>>> brown.fileids('blah')
Traceback (most recent call last):
...
ValueError: Category blah not found
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance', 'science_fiction']
Issue 175: add the unseen bin to SimpleGoodTuringProbDist by default
otherwise any unseen events get a probability of zero, i.e.,
they don't get smoothed
>>> from nltk import SimpleGoodTuringProbDist, FreqDist
>>> fd = FreqDist({'a':1, 'b':1, 'c': 2, 'd': 3, 'e': 4, 'f': 4, 'g': 4, 'h': 5, 'i': 5, 'j': 6, 'k': 6, 'l': 6, 'm': 7, 'n': 7, 'o': 8, 'p': 9, 'q': 10})
>>> p = SimpleGoodTuringProbDist(fd)
>>> p.prob('a')
0.017649766667026317...
>>> p.prob('o')
0.08433050215340411...
>>> p.prob('z')
0.022727272727272728...
>>> p.prob('foobar')
0.022727272727272728...
``MLEProbDist``, ``ConditionalProbDist'', ``DictionaryConditionalProbDist`` and
``ConditionalFreqDist`` can be pickled:
>>> import pickle
>>> pd = MLEProbDist(fd)
>>> sorted(pd.samples()) == sorted(pickle.loads(pickle.dumps(pd)).samples())
True
>>> dpd = DictionaryConditionalProbDist({'x': pd})
>>> unpickled = pickle.loads(pickle.dumps(dpd))
>>> dpd['x'].prob('a')
0.011363636...
>>> dpd['x'].prob('a') == unpickled['x'].prob('a')
True
>>> cfd = nltk.probability.ConditionalFreqDist()
>>> cfd['foo']['hello'] += 1
>>> cfd['foo']['hello'] += 1
>>> cfd['bar']['hello'] += 1
>>> cfd2 = pickle.loads(pickle.dumps(cfd))
>>> cfd2 == cfd
True
>>> cpd = ConditionalProbDist(cfd, SimpleGoodTuringProbDist)
>>> cpd2 = pickle.loads(pickle.dumps(cpd))
>>> cpd['foo'].prob('hello') == cpd2['foo'].prob('hello')
True