You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

385 lines
12 KiB
Plaintext

.. Copyright (C) 2001-2019 NLTK Project
.. For license information, see LICENSE.TXT
==============================================================================
Glue Semantics
==============================================================================
.. include:: ../../../nltk_book/definitions.rst
======================
Linear logic
======================
>>> from nltk.sem import logic
>>> from nltk.sem.glue import *
>>> from nltk.sem.linearlogic import *
>>> from nltk.sem.linearlogic import Expression
>>> read_expr = Expression.fromstring
Parser
>>> print(read_expr(r'f'))
f
>>> print(read_expr(r'(g -o f)'))
(g -o f)
>>> print(read_expr(r'(g -o (h -o f))'))
(g -o (h -o f))
>>> print(read_expr(r'((g -o G) -o G)'))
((g -o G) -o G)
>>> print(read_expr(r'(g -o f)(g)'))
(g -o f)(g)
>>> print(read_expr(r'((g -o G) -o G)((g -o f))'))
((g -o G) -o G)((g -o f))
Simplify
>>> print(read_expr(r'f').simplify())
f
>>> print(read_expr(r'(g -o f)').simplify())
(g -o f)
>>> print(read_expr(r'((g -o G) -o G)').simplify())
((g -o G) -o G)
>>> print(read_expr(r'(g -o f)(g)').simplify())
f
>>> try: read_expr(r'(g -o f)(f)').simplify()
... except LinearLogicApplicationException as e: print(e)
...
Cannot apply (g -o f) to f. Cannot unify g with f given {}
>>> print(read_expr(r'(G -o f)(g)').simplify())
f
>>> print(read_expr(r'((g -o G) -o G)((g -o f))').simplify())
f
Test BindingDict
>>> h = ConstantExpression('h')
>>> g = ConstantExpression('g')
>>> f = ConstantExpression('f')
>>> H = VariableExpression('H')
>>> G = VariableExpression('G')
>>> F = VariableExpression('F')
>>> d1 = BindingDict({H: h})
>>> d2 = BindingDict({F: f, G: F})
>>> d12 = d1 + d2
>>> all12 = ['%s: %s' % (v, d12[v]) for v in d12.d]
>>> all12.sort()
>>> print(all12)
['F: f', 'G: f', 'H: h']
>>> BindingDict([(F,f),(G,g),(H,h)]) == BindingDict({F:f, G:g, H:h})
True
>>> d4 = BindingDict({F: f})
>>> try: d4[F] = g
... except VariableBindingException as e: print(e)
Variable F already bound to another value
Test Unify
>>> try: f.unify(g, BindingDict())
... except UnificationException as e: print(e)
...
Cannot unify f with g given {}
>>> f.unify(G, BindingDict()) == BindingDict({G: f})
True
>>> try: f.unify(G, BindingDict({G: h}))
... except UnificationException as e: print(e)
...
Cannot unify f with G given {G: h}
>>> f.unify(G, BindingDict({G: f})) == BindingDict({G: f})
True
>>> f.unify(G, BindingDict({H: f})) == BindingDict({G: f, H: f})
True
>>> G.unify(f, BindingDict()) == BindingDict({G: f})
True
>>> try: G.unify(f, BindingDict({G: h}))
... except UnificationException as e: print(e)
...
Cannot unify G with f given {G: h}
>>> G.unify(f, BindingDict({G: f})) == BindingDict({G: f})
True
>>> G.unify(f, BindingDict({H: f})) == BindingDict({G: f, H: f})
True
>>> G.unify(F, BindingDict()) == BindingDict({G: F})
True
>>> try: G.unify(F, BindingDict({G: H}))
... except UnificationException as e: print(e)
...
Cannot unify G with F given {G: H}
>>> G.unify(F, BindingDict({G: F})) == BindingDict({G: F})
True
>>> G.unify(F, BindingDict({H: F})) == BindingDict({G: F, H: F})
True
Test Compile
>>> print(read_expr('g').compile_pos(Counter(), GlueFormula))
(<ConstantExpression g>, [])
>>> print(read_expr('(g -o f)').compile_pos(Counter(), GlueFormula))
(<ImpExpression (g -o f)>, [])
>>> print(read_expr('(g -o (h -o f))').compile_pos(Counter(), GlueFormula))
(<ImpExpression (g -o (h -o f))>, [])
======================
Glue
======================
Demo of "John walks"
--------------------
>>> john = GlueFormula("John", "g")
>>> print(john)
John : g
>>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
>>> print(walks)
\x.walks(x) : (g -o f)
>>> print(walks.applyto(john))
\x.walks(x)(John) : (g -o f)(g)
>>> print(walks.applyto(john).simplify())
walks(John) : f
Demo of "A dog walks"
---------------------
>>> a = GlueFormula("\P Q.some x.(P(x) and Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
>>> print(a)
\P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
>>> man = GlueFormula(r"\x.man(x)", "(gv -o gr)")
>>> print(man)
\x.man(x) : (gv -o gr)
>>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
>>> print(walks)
\x.walks(x) : (g -o f)
>>> a_man = a.applyto(man)
>>> print(a_man.simplify())
\Q.exists x.(man(x) & Q(x)) : ((g -o G) -o G)
>>> a_man_walks = a_man.applyto(walks)
>>> print(a_man_walks.simplify())
exists x.(man(x) & walks(x)) : f
Demo of 'every girl chases a dog'
---------------------------------
Individual words:
>>> every = GlueFormula("\P Q.all x.(P(x) -> Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
>>> print(every)
\P Q.all x.(P(x) -> Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
>>> girl = GlueFormula(r"\x.girl(x)", "(gv -o gr)")
>>> print(girl)
\x.girl(x) : (gv -o gr)
>>> chases = GlueFormula(r"\x y.chases(x,y)", "(g -o (h -o f))")
>>> print(chases)
\x y.chases(x,y) : (g -o (h -o f))
>>> a = GlueFormula("\P Q.some x.(P(x) and Q(x))", "((hv -o hr) -o ((h -o H) -o H))")
>>> print(a)
\P Q.exists x.(P(x) & Q(x)) : ((hv -o hr) -o ((h -o H) -o H))
>>> dog = GlueFormula(r"\x.dog(x)", "(hv -o hr)")
>>> print(dog)
\x.dog(x) : (hv -o hr)
Noun Quantification can only be done one way:
>>> every_girl = every.applyto(girl)
>>> print(every_girl.simplify())
\Q.all x.(girl(x) -> Q(x)) : ((g -o G) -o G)
>>> a_dog = a.applyto(dog)
>>> print(a_dog.simplify())
\Q.exists x.(dog(x) & Q(x)) : ((h -o H) -o H)
The first reading is achieved by combining 'chases' with 'a dog' first.
Since 'a girl' requires something of the form '(h -o H)' we must
get rid of the 'g' in the glue of 'see'. We will do this with
the '-o elimination' rule. So, x1 will be our subject placeholder.
>>> xPrime = GlueFormula("x1", "g")
>>> print(xPrime)
x1 : g
>>> xPrime_chases = chases.applyto(xPrime)
>>> print(xPrime_chases.simplify())
\y.chases(x1,y) : (h -o f)
>>> xPrime_chases_a_dog = a_dog.applyto(xPrime_chases)
>>> print(xPrime_chases_a_dog.simplify())
exists x.(dog(x) & chases(x1,x)) : f
Now we can retract our subject placeholder using lambda-abstraction and
combine with the true subject.
>>> chases_a_dog = xPrime_chases_a_dog.lambda_abstract(xPrime)
>>> print(chases_a_dog.simplify())
\x1.exists x.(dog(x) & chases(x1,x)) : (g -o f)
>>> every_girl_chases_a_dog = every_girl.applyto(chases_a_dog)
>>> r1 = every_girl_chases_a_dog.simplify()
>>> r2 = GlueFormula(r'all x.(girl(x) -> exists z1.(dog(z1) & chases(x,z1)))', 'f')
>>> r1 == r2
True
The second reading is achieved by combining 'every girl' with 'chases' first.
>>> xPrime = GlueFormula("x1", "g")
>>> print(xPrime)
x1 : g
>>> xPrime_chases = chases.applyto(xPrime)
>>> print(xPrime_chases.simplify())
\y.chases(x1,y) : (h -o f)
>>> yPrime = GlueFormula("x2", "h")
>>> print(yPrime)
x2 : h
>>> xPrime_chases_yPrime = xPrime_chases.applyto(yPrime)
>>> print(xPrime_chases_yPrime.simplify())
chases(x1,x2) : f
>>> chases_yPrime = xPrime_chases_yPrime.lambda_abstract(xPrime)
>>> print(chases_yPrime.simplify())
\x1.chases(x1,x2) : (g -o f)
>>> every_girl_chases_yPrime = every_girl.applyto(chases_yPrime)
>>> print(every_girl_chases_yPrime.simplify())
all x.(girl(x) -> chases(x,x2)) : f
>>> every_girl_chases = every_girl_chases_yPrime.lambda_abstract(yPrime)
>>> print(every_girl_chases.simplify())
\x2.all x.(girl(x) -> chases(x,x2)) : (h -o f)
>>> every_girl_chases_a_dog = a_dog.applyto(every_girl_chases)
>>> r1 = every_girl_chases_a_dog.simplify()
>>> r2 = GlueFormula(r'exists x.(dog(x) & all z2.(girl(z2) -> chases(z2,x)))', 'f')
>>> r1 == r2
True
Compilation
-----------
>>> for cp in GlueFormula('m', '(b -o a)').compile(Counter()): print(cp)
m : (b -o a) : {1}
>>> for cp in GlueFormula('m', '((c -o b) -o a)').compile(Counter()): print(cp)
v1 : c : {1}
m : (b[1] -o a) : {2}
>>> for cp in GlueFormula('m', '((d -o (c -o b)) -o a)').compile(Counter()): print(cp)
v1 : c : {1}
v2 : d : {2}
m : (b[1, 2] -o a) : {3}
>>> for cp in GlueFormula('m', '((d -o e) -o ((c -o b) -o a))').compile(Counter()): print(cp)
v1 : d : {1}
v2 : c : {2}
m : (e[1] -o (b[2] -o a)) : {3}
>>> for cp in GlueFormula('m', '(((d -o c) -o b) -o a)').compile(Counter()): print(cp)
v1 : (d -o c) : {1}
m : (b[1] -o a) : {2}
>>> for cp in GlueFormula('m', '((((e -o d) -o c) -o b) -o a)').compile(Counter()): print(cp)
v1 : e : {1}
v2 : (d[1] -o c) : {2}
m : (b[2] -o a) : {3}
Demo of 'a man walks' using Compilation
---------------------------------------
Premises
>>> a = GlueFormula('\\P Q.some x.(P(x) and Q(x))', '((gv -o gr) -o ((g -o G) -o G))')
>>> print(a)
\P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
>>> man = GlueFormula('\\x.man(x)', '(gv -o gr)')
>>> print(man)
\x.man(x) : (gv -o gr)
>>> walks = GlueFormula('\\x.walks(x)', '(g -o f)')
>>> print(walks)
\x.walks(x) : (g -o f)
Compiled Premises:
>>> counter = Counter()
>>> ahc = a.compile(counter)
>>> g1 = ahc[0]
>>> print(g1)
v1 : gv : {1}
>>> g2 = ahc[1]
>>> print(g2)
v2 : g : {2}
>>> g3 = ahc[2]
>>> print(g3)
\P Q.exists x.(P(x) & Q(x)) : (gr[1] -o (G[2] -o G)) : {3}
>>> g4 = man.compile(counter)[0]
>>> print(g4)
\x.man(x) : (gv -o gr) : {4}
>>> g5 = walks.compile(counter)[0]
>>> print(g5)
\x.walks(x) : (g -o f) : {5}
Derivation:
>>> g14 = g4.applyto(g1)
>>> print(g14.simplify())
man(v1) : gr : {1, 4}
>>> g134 = g3.applyto(g14)
>>> print(g134.simplify())
\Q.exists x.(man(x) & Q(x)) : (G[2] -o G) : {1, 3, 4}
>>> g25 = g5.applyto(g2)
>>> print(g25.simplify())
walks(v2) : f : {2, 5}
>>> g12345 = g134.applyto(g25)
>>> print(g12345.simplify())
exists x.(man(x) & walks(x)) : f : {1, 2, 3, 4, 5}
---------------------------------
Dependency Graph to Glue Formulas
---------------------------------
>>> from nltk.corpus.reader.dependency import DependencyGraph
>>> depgraph = DependencyGraph("""1 John _ NNP NNP _ 2 SUBJ _ _
... 2 sees _ VB VB _ 0 ROOT _ _
... 3 a _ ex_quant ex_quant _ 4 SPEC _ _
... 4 dog _ NN NN _ 2 OBJ _ _
... """)
>>> gfl = GlueDict('nltk:grammars/sample_grammars/glue.semtype').to_glueformula_list(depgraph)
>>> print(gfl) # doctest: +SKIP
[\x y.sees(x,y) : (f -o (i -o g)),
\x.dog(x) : (iv -o ir),
\P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I3) -o I3)),
\P Q.exists x.(P(x) & Q(x)) : ((fv -o fr) -o ((f -o F4) -o F4)),
\x.John(x) : (fv -o fr)]
>>> glue = Glue()
>>> for r in sorted([r.simplify().normalize() for r in glue.get_readings(glue.gfl_to_compiled(gfl))], key=str):
... print(r)
exists z1.(John(z1) & exists z2.(dog(z2) & sees(z1,z2)))
exists z1.(dog(z1) & exists z2.(John(z2) & sees(z2,z1)))
-----------------------------------
Dependency Graph to LFG f-structure
-----------------------------------
>>> from nltk.sem.lfg import FStructure
>>> fstruct = FStructure.read_depgraph(depgraph)
>>> print(fstruct) # doctest: +SKIP
f:[pred 'sees'
obj h:[pred 'dog'
spec 'a']
subj g:[pred 'John']]
>>> fstruct.to_depgraph().tree().pprint()
(sees (dog a) John)
---------------------------------
LFG f-structure to Glue
---------------------------------
>>> fstruct.to_glueformula_list(GlueDict('nltk:grammars/sample_grammars/glue.semtype')) # doctest: +SKIP
[\x y.sees(x,y) : (i -o (g -o f)),
\x.dog(x) : (gv -o gr),
\P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G3) -o G3)),
\P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I4) -o I4)),
\x.John(x) : (iv -o ir)]
.. see gluesemantics_malt.doctest for more