You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

311 lines
8.6 KiB
Python

# Natural Language Toolkit: Semantic Interpretation
#
# Author: Ewan Klein <ewan@inf.ed.ac.uk>
#
# Copyright (C) 2001-2019 NLTK Project
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
"""
Utility functions for batch-processing sentences: parsing and
extraction of the semantic representation of the root node of the the
syntax tree, followed by evaluation of the semantic representation in
a first-order model.
"""
from __future__ import print_function, unicode_literals
import codecs
from nltk.sem import evaluate
##############################################################
## Utility functions for connecting parse output to semantics
##############################################################
def parse_sents(inputs, grammar, trace=0):
"""
Convert input sentences into syntactic trees.
:param inputs: sentences to be parsed
:type inputs: list(str)
:param grammar: ``FeatureGrammar`` or name of feature-based grammar
:type grammar: nltk.grammar.FeatureGrammar
:rtype: list(nltk.tree.Tree) or dict(list(str)): list(Tree)
:return: a mapping from input sentences to a list of ``Tree``s
"""
# put imports here to avoid circult dependencies
from nltk.grammar import FeatureGrammar
from nltk.parse import FeatureChartParser, load_parser
if isinstance(grammar, FeatureGrammar):
cp = FeatureChartParser(grammar)
else:
cp = load_parser(grammar, trace=trace)
parses = []
for sent in inputs:
tokens = sent.split() # use a tokenizer?
syntrees = list(cp.parse(tokens))
parses.append(syntrees)
return parses
def root_semrep(syntree, semkey='SEM'):
"""
Find the semantic representation at the root of a tree.
:param syntree: a parse ``Tree``
:param semkey: the feature label to use for the root semantics in the tree
:return: the semantic representation at the root of a ``Tree``
:rtype: sem.Expression
"""
from nltk.grammar import FeatStructNonterminal
node = syntree.label()
assert isinstance(node, FeatStructNonterminal)
try:
return node[semkey]
except KeyError:
print(node, end=' ')
print("has no specification for the feature %s" % semkey)
raise
def interpret_sents(inputs, grammar, semkey='SEM', trace=0):
"""
Add the semantic representation to each syntactic parse tree
of each input sentence.
:param inputs: a list of sentences
:type inputs: list(str)
:param grammar: ``FeatureGrammar`` or name of feature-based grammar
:type grammar: nltk.grammar.FeatureGrammar
:return: a mapping from sentences to lists of pairs (parse-tree, semantic-representations)
:rtype: list(list(tuple(nltk.tree.Tree, nltk.sem.logic.ConstantExpression)))
"""
return [
[(syn, root_semrep(syn, semkey)) for syn in syntrees]
for syntrees in parse_sents(inputs, grammar, trace=trace)
]
def evaluate_sents(inputs, grammar, model, assignment, trace=0):
"""
Add the truth-in-a-model value to each semantic representation
for each syntactic parse of each input sentences.
:param inputs: a list of sentences
:type inputs: list(str)
:param grammar: ``FeatureGrammar`` or name of feature-based grammar
:type grammar: nltk.grammar.FeatureGrammar
:return: a mapping from sentences to lists of triples (parse-tree, semantic-representations, evaluation-in-model)
:rtype: list(list(tuple(nltk.tree.Tree, nltk.sem.logic.ConstantExpression, bool or dict(str): bool)))
"""
return [
[
(syn, sem, model.evaluate("%s" % sem, assignment, trace=trace))
for (syn, sem) in interpretations
]
for interpretations in interpret_sents(inputs, grammar)
]
def demo_model0():
global m0, g0
# Initialize a valuation of non-logical constants."""
v = [
('john', 'b1'),
('mary', 'g1'),
('suzie', 'g2'),
('fido', 'd1'),
('tess', 'd2'),
('noosa', 'n'),
('girl', set(['g1', 'g2'])),
('boy', set(['b1', 'b2'])),
('dog', set(['d1', 'd2'])),
('bark', set(['d1', 'd2'])),
('walk', set(['b1', 'g2', 'd1'])),
('chase', set([('b1', 'g1'), ('b2', 'g1'), ('g1', 'd1'), ('g2', 'd2')])),
(
'see',
set([('b1', 'g1'), ('b2', 'd2'), ('g1', 'b1'), ('d2', 'b1'), ('g2', 'n')]),
),
('in', set([('b1', 'n'), ('b2', 'n'), ('d2', 'n')])),
('with', set([('b1', 'g1'), ('g1', 'b1'), ('d1', 'b1'), ('b1', 'd1')])),
]
# Read in the data from ``v``
val = evaluate.Valuation(v)
# Bind ``dom`` to the ``domain`` property of ``val``
dom = val.domain
# Initialize a model with parameters ``dom`` and ``val``.
m0 = evaluate.Model(dom, val)
# Initialize a variable assignment with parameter ``dom``
g0 = evaluate.Assignment(dom)
def read_sents(filename, encoding='utf8'):
with codecs.open(filename, 'r', encoding) as fp:
sents = [l.rstrip() for l in fp]
# get rid of blank lines
sents = [l for l in sents if len(l) > 0]
sents = [l for l in sents if not l[0] == '#']
return sents
def demo_legacy_grammar():
"""
Check that interpret_sents() is compatible with legacy grammars that use
a lowercase 'sem' feature.
Define 'test.fcfg' to be the following
"""
from nltk.grammar import FeatureGrammar
g = FeatureGrammar.fromstring(
"""
% start S
S[sem=<hello>] -> 'hello'
"""
)
print("Reading grammar: %s" % g)
print("*" * 20)
for reading in interpret_sents(['hello'], g, semkey='sem'):
syn, sem = reading[0]
print()
print("output: ", sem)
def demo():
import sys
from optparse import OptionParser
description = """
Parse and evaluate some sentences.
"""
opts = OptionParser(description=description)
opts.set_defaults(
evaluate=True,
beta=True,
syntrace=0,
semtrace=0,
demo='default',
grammar='',
sentences='',
)
opts.add_option(
"-d",
"--demo",
dest="demo",
help="choose demo D; omit this for the default demo, or specify 'chat80'",
metavar="D",
)
opts.add_option(
"-g", "--gram", dest="grammar", help="read in grammar G", metavar="G"
)
opts.add_option(
"-m",
"--model",
dest="model",
help="import model M (omit '.py' suffix)",
metavar="M",
)
opts.add_option(
"-s",
"--sentences",
dest="sentences",
help="read in a file of test sentences S",
metavar="S",
)
opts.add_option(
"-e",
"--no-eval",
action="store_false",
dest="evaluate",
help="just do a syntactic analysis",
)
opts.add_option(
"-b",
"--no-beta-reduction",
action="store_false",
dest="beta",
help="don't carry out beta-reduction",
)
opts.add_option(
"-t",
"--syntrace",
action="count",
dest="syntrace",
help="set syntactic tracing on; requires '-e' option",
)
opts.add_option(
"-T",
"--semtrace",
action="count",
dest="semtrace",
help="set semantic tracing on",
)
(options, args) = opts.parse_args()
SPACER = '-' * 30
demo_model0()
sents = [
'Fido sees a boy with Mary',
'John sees Mary',
'every girl chases a dog',
'every boy chases a girl',
'John walks with a girl in Noosa',
'who walks',
]
gramfile = 'grammars/sample_grammars/sem2.fcfg'
if options.sentences:
sentsfile = options.sentences
if options.grammar:
gramfile = options.grammar
if options.model:
exec("import %s as model" % options.model)
if sents is None:
sents = read_sents(sentsfile)
# Set model and assignment
model = m0
g = g0
if options.evaluate:
evaluations = evaluate_sents(sents, gramfile, model, g, trace=options.semtrace)
else:
semreps = interpret_sents(sents, gramfile, trace=options.syntrace)
for i, sent in enumerate(sents):
n = 1
print('\nSentence: %s' % sent)
print(SPACER)
if options.evaluate:
for (syntree, semrep, value) in evaluations[i]:
if isinstance(value, dict):
value = set(value.keys())
print('%d: %s' % (n, semrep))
print(value)
n += 1
else:
for (syntree, semrep) in semreps[i]:
print('%d: %s' % (n, semrep))
n += 1
if __name__ == "__main__":
demo()
demo_legacy_grammar()