You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
77 lines
2.1 KiB
Python
77 lines
2.1 KiB
Python
# Natural Language Toolkit: Clusterer Interfaces
|
|
#
|
|
# Copyright (C) 2001-2019 NLTK Project
|
|
# Author: Trevor Cohn <tacohn@cs.mu.oz.au>
|
|
# Porting: Steven Bird <stevenbird1@gmail.com>
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
from abc import ABCMeta, abstractmethod
|
|
from six import add_metaclass
|
|
|
|
from nltk.probability import DictionaryProbDist
|
|
|
|
|
|
@add_metaclass(ABCMeta)
|
|
class ClusterI(object):
|
|
"""
|
|
Interface covering basic clustering functionality.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def cluster(self, vectors, assign_clusters=False):
|
|
"""
|
|
Assigns the vectors to clusters, learning the clustering parameters
|
|
from the data. Returns a cluster identifier for each vector.
|
|
"""
|
|
|
|
@abstractmethod
|
|
def classify(self, token):
|
|
"""
|
|
Classifies the token into a cluster, setting the token's CLUSTER
|
|
parameter to that cluster identifier.
|
|
"""
|
|
|
|
def likelihood(self, vector, label):
|
|
"""
|
|
Returns the likelihood (a float) of the token having the
|
|
corresponding cluster.
|
|
"""
|
|
if self.classify(vector) == label:
|
|
return 1.0
|
|
else:
|
|
return 0.0
|
|
|
|
def classification_probdist(self, vector):
|
|
"""
|
|
Classifies the token into a cluster, returning
|
|
a probability distribution over the cluster identifiers.
|
|
"""
|
|
likelihoods = {}
|
|
sum = 0.0
|
|
for cluster in self.cluster_names():
|
|
likelihoods[cluster] = self.likelihood(vector, cluster)
|
|
sum += likelihoods[cluster]
|
|
for cluster in self.cluster_names():
|
|
likelihoods[cluster] /= sum
|
|
return DictionaryProbDist(likelihoods)
|
|
|
|
@abstractmethod
|
|
def num_clusters(self):
|
|
"""
|
|
Returns the number of clusters.
|
|
"""
|
|
|
|
def cluster_names(self):
|
|
"""
|
|
Returns the names of the clusters.
|
|
:rtype: list
|
|
"""
|
|
return list(range(self.num_clusters()))
|
|
|
|
def cluster_name(self, index):
|
|
"""
|
|
Returns the names of the cluster at index.
|
|
"""
|
|
return index
|