You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

300 lines
12 KiB
Python

"""
Tools for triangular grids.
"""
import numpy as np
from matplotlib import cbook
from matplotlib.tri import Triangulation
class TriAnalyzer:
"""
Define basic tools for triangular mesh analysis and improvement.
A TriAnalyzer encapsulates a :class:`~matplotlib.tri.Triangulation`
object and provides basic tools for mesh analysis and mesh improvement.
Parameters
----------
triangulation : :class:`~matplotlib.tri.Triangulation` object
The encapsulated triangulation to analyze.
Attributes
----------
`scale_factors`
"""
def __init__(self, triangulation):
cbook._check_isinstance(Triangulation, triangulation=triangulation)
self._triangulation = triangulation
@property
def scale_factors(self):
"""
Factors to rescale the triangulation into a unit square.
Returns *k*, tuple of 2 scale factors.
Returns
-------
k : tuple of 2 floats (kx, ky)
Tuple of floats that would rescale the triangulation :
``[triangulation.x * kx, triangulation.y * ky]``
fits exactly inside a unit square.
"""
compressed_triangles = self._triangulation.get_masked_triangles()
node_used = (np.bincount(np.ravel(compressed_triangles),
minlength=self._triangulation.x.size) != 0)
return (1 / np.ptp(self._triangulation.x[node_used]),
1 / np.ptp(self._triangulation.y[node_used]))
def circle_ratios(self, rescale=True):
"""
Returns a measure of the triangulation triangles flatness.
The ratio of the incircle radius over the circumcircle radius is a
widely used indicator of a triangle flatness.
It is always ``<= 0.5`` and ``== 0.5`` only for equilateral
triangles. Circle ratios below 0.01 denote very flat triangles.
To avoid unduly low values due to a difference of scale between the 2
axis, the triangular mesh can first be rescaled to fit inside a unit
square with :attr:`scale_factors` (Only if *rescale* is True, which is
its default value).
Parameters
----------
rescale : boolean, optional
If True, a rescaling will be internally performed (based on
:attr:`scale_factors`, so that the (unmasked) triangles fit
exactly inside a unit square mesh. Default is True.
Returns
-------
circle_ratios : masked array
Ratio of the incircle radius over the
circumcircle radius, for each 'rescaled' triangle of the
encapsulated triangulation.
Values corresponding to masked triangles are masked out.
"""
# Coords rescaling
if rescale:
(kx, ky) = self.scale_factors
else:
(kx, ky) = (1.0, 1.0)
pts = np.vstack([self._triangulation.x*kx,
self._triangulation.y*ky]).T
tri_pts = pts[self._triangulation.triangles]
# Computes the 3 side lengths
a = tri_pts[:, 1, :] - tri_pts[:, 0, :]
b = tri_pts[:, 2, :] - tri_pts[:, 1, :]
c = tri_pts[:, 0, :] - tri_pts[:, 2, :]
a = np.hypot(a[:, 0], a[:, 1])
b = np.hypot(b[:, 0], b[:, 1])
c = np.hypot(c[:, 0], c[:, 1])
# circumcircle and incircle radii
s = (a+b+c)*0.5
prod = s*(a+b-s)*(a+c-s)*(b+c-s)
# We have to deal with flat triangles with infinite circum_radius
bool_flat = (prod == 0.)
if np.any(bool_flat):
# Pathologic flow
ntri = tri_pts.shape[0]
circum_radius = np.empty(ntri, dtype=np.float64)
circum_radius[bool_flat] = np.inf
abc = a*b*c
circum_radius[~bool_flat] = abc[~bool_flat] / (
4.0*np.sqrt(prod[~bool_flat]))
else:
# Normal optimized flow
circum_radius = (a*b*c) / (4.0*np.sqrt(prod))
in_radius = (a*b*c) / (4.0*circum_radius*s)
circle_ratio = in_radius/circum_radius
mask = self._triangulation.mask
if mask is None:
return circle_ratio
else:
return np.ma.array(circle_ratio, mask=mask)
def get_flat_tri_mask(self, min_circle_ratio=0.01, rescale=True):
"""
Eliminates excessively flat border triangles from the triangulation.
Returns a mask *new_mask* which allows to clean the encapsulated
triangulation from its border-located flat triangles
(according to their :meth:`circle_ratios`).
This mask is meant to be subsequently applied to the triangulation
using :func:`matplotlib.tri.Triangulation.set_mask`.
*new_mask* is an extension of the initial triangulation mask
in the sense that an initially masked triangle will remain masked.
The *new_mask* array is computed recursively; at each step flat
triangles are removed only if they share a side with the current mesh
border. Thus no new holes in the triangulated domain will be created.
Parameters
----------
min_circle_ratio : float, optional
Border triangles with incircle/circumcircle radii ratio r/R will
be removed if r/R < *min_circle_ratio*. Default value: 0.01
rescale : boolean, optional
If True, a rescaling will first be internally performed (based on
:attr:`scale_factors` ), so that the (unmasked) triangles fit
exactly inside a unit square mesh. This rescaling accounts for the
difference of scale which might exist between the 2 axis. Default
(and recommended) value is True.
Returns
-------
new_mask : array-like of booleans
Mask to apply to encapsulated triangulation.
All the initially masked triangles remain masked in the
*new_mask*.
Notes
-----
The rationale behind this function is that a Delaunay
triangulation - of an unstructured set of points - sometimes contains
almost flat triangles at its border, leading to artifacts in plots
(especially for high-resolution contouring).
Masked with computed *new_mask*, the encapsulated
triangulation would contain no more unmasked border triangles
with a circle ratio below *min_circle_ratio*, thus improving the
mesh quality for subsequent plots or interpolation.
"""
# Recursively computes the mask_current_borders, true if a triangle is
# at the border of the mesh OR touching the border through a chain of
# invalid aspect ratio masked_triangles.
ntri = self._triangulation.triangles.shape[0]
mask_bad_ratio = self.circle_ratios(rescale) < min_circle_ratio
current_mask = self._triangulation.mask
if current_mask is None:
current_mask = np.zeros(ntri, dtype=bool)
valid_neighbors = np.copy(self._triangulation.neighbors)
renum_neighbors = np.arange(ntri, dtype=np.int32)
nadd = -1
while nadd != 0:
# The active wavefront is the triangles from the border (unmasked
# but with a least 1 neighbor equal to -1
wavefront = (np.min(valid_neighbors, axis=1) == -1) & ~current_mask
# The element from the active wavefront will be masked if their
# circle ratio is bad.
added_mask = wavefront & mask_bad_ratio
current_mask = added_mask | current_mask
nadd = np.sum(added_mask)
# now we have to update the tables valid_neighbors
valid_neighbors[added_mask, :] = -1
renum_neighbors[added_mask] = -1
valid_neighbors = np.where(valid_neighbors == -1, -1,
renum_neighbors[valid_neighbors])
return np.ma.filled(current_mask, True)
def _get_compressed_triangulation(self, return_tri_renum=False,
return_node_renum=False):
"""
Compress (if masked) the encapsulated triangulation.
Returns minimal-length triangles array (*compressed_triangles*) and
coordinates arrays (*compressed_x*, *compressed_y*) that can still
describe the unmasked triangles of the encapsulated triangulation.
Parameters
----------
return_tri_renum : boolean, optional
Indicates whether a renumbering table to translate the triangle
numbers from the encapsulated triangulation numbering into the
new (compressed) renumbering will be returned.
return_node_renum : boolean, optional
Indicates whether a renumbering table to translate the nodes
numbers from the encapsulated triangulation numbering into the
new (compressed) renumbering will be returned.
Returns
-------
compressed_triangles : array-like
the returned compressed triangulation triangles
compressed_x : array-like
the returned compressed triangulation 1st coordinate
compressed_y : array-like
the returned compressed triangulation 2nd coordinate
tri_renum : array-like of integers
renumbering table to translate the triangle numbers from the
encapsulated triangulation into the new (compressed) renumbering.
-1 for masked triangles (deleted from *compressed_triangles*).
Returned only if *return_tri_renum* is True.
node_renum : array-like of integers
renumbering table to translate the point numbers from the
encapsulated triangulation into the new (compressed) renumbering.
-1 for unused points (i.e. those deleted from *compressed_x* and
*compressed_y*). Returned only if *return_node_renum* is True.
"""
# Valid triangles and renumbering
tri_mask = self._triangulation.mask
compressed_triangles = self._triangulation.get_masked_triangles()
ntri = self._triangulation.triangles.shape[0]
tri_renum = self._total_to_compress_renum(tri_mask, ntri)
# Valid nodes and renumbering
node_mask = (np.bincount(np.ravel(compressed_triangles),
minlength=self._triangulation.x.size) == 0)
compressed_x = self._triangulation.x[~node_mask]
compressed_y = self._triangulation.y[~node_mask]
node_renum = self._total_to_compress_renum(node_mask)
# Now renumbering the valid triangles nodes
compressed_triangles = node_renum[compressed_triangles]
# 4 cases possible for return
if not return_tri_renum:
if not return_node_renum:
return compressed_triangles, compressed_x, compressed_y
else:
return (compressed_triangles, compressed_x, compressed_y,
node_renum)
else:
if not return_node_renum:
return (compressed_triangles, compressed_x, compressed_y,
tri_renum)
else:
return (compressed_triangles, compressed_x, compressed_y,
tri_renum, node_renum)
@staticmethod
def _total_to_compress_renum(mask, n=None):
"""
Parameters
----------
mask : 1d boolean array or None
mask
n : integer
length of the mask. Useful only id mask can be None
Returns
-------
renum : integer array
array so that (`valid_array` being a compressed array
based on a `masked_array` with mask *mask*) :
- For all i such as mask[i] = False:
valid_array[renum[i]] = masked_array[i]
- For all i such as mask[i] = True:
renum[i] = -1 (invalid value)
"""
if n is None:
n = np.size(mask)
if mask is not None:
renum = np.full(n, -1, dtype=np.int32) # Default num is -1
valid = np.arange(n, dtype=np.int32)[~mask]
renum[valid] = np.arange(np.size(valid, 0), dtype=np.int32)
return renum
else:
return np.arange(n, dtype=np.int32)