You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

824 lines
32 KiB
Python

import datetime
try:
from contextlib import nullcontext
except ImportError:
from contextlib import ExitStack as nullcontext # Py 3.6.
import dateutil.tz
import dateutil.rrule
import numpy as np
import pytest
from matplotlib import rc_context
from matplotlib.cbook import MatplotlibDeprecationWarning
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
from matplotlib.testing.decorators import image_comparison
import matplotlib.ticker as mticker
def test_date_numpyx():
# test that numpy dates work properly...
base = datetime.datetime(2017, 1, 1)
time = [base + datetime.timedelta(days=x) for x in range(0, 3)]
timenp = np.array(time, dtype='datetime64[ns]')
data = np.array([0., 2., 1.])
fig = plt.figure(figsize=(10, 2))
ax = fig.add_subplot(1, 1, 1)
h, = ax.plot(time, data)
hnp, = ax.plot(timenp, data)
np.testing.assert_equal(h.get_xdata(orig=False), hnp.get_xdata(orig=False))
fig = plt.figure(figsize=(10, 2))
ax = fig.add_subplot(1, 1, 1)
h, = ax.plot(data, time)
hnp, = ax.plot(data, timenp)
np.testing.assert_equal(h.get_ydata(orig=False), hnp.get_ydata(orig=False))
@pytest.mark.parametrize('t0', [datetime.datetime(2017, 1, 1, 0, 1, 1),
[datetime.datetime(2017, 1, 1, 0, 1, 1),
datetime.datetime(2017, 1, 1, 1, 1, 1)],
[[datetime.datetime(2017, 1, 1, 0, 1, 1),
datetime.datetime(2017, 1, 1, 1, 1, 1)],
[datetime.datetime(2017, 1, 1, 2, 1, 1),
datetime.datetime(2017, 1, 1, 3, 1, 1)]]])
@pytest.mark.parametrize('dtype', ['datetime64[s]',
'datetime64[us]',
'datetime64[ms]',
'datetime64[ns]'])
def test_date_date2num_numpy(t0, dtype):
time = mdates.date2num(t0)
tnp = np.array(t0, dtype=dtype)
nptime = mdates.date2num(tnp)
np.testing.assert_equal(time, nptime)
@pytest.mark.parametrize('dtype', ['datetime64[s]',
'datetime64[us]',
'datetime64[ms]',
'datetime64[ns]'])
def test_date2num_NaT(dtype):
t0 = datetime.datetime(2017, 1, 1, 0, 1, 1)
tmpl = [mdates.date2num(t0), np.nan]
tnp = np.array([t0, 'NaT'], dtype=dtype)
nptime = mdates.date2num(tnp)
np.testing.assert_array_equal(tmpl, nptime)
@pytest.mark.parametrize('units', ['s', 'ms', 'us', 'ns'])
def test_date2num_NaT_scalar(units):
tmpl = mdates.date2num(np.datetime64('NaT', units))
assert np.isnan(tmpl)
@image_comparison(['date_empty.png'])
def test_date_empty():
# make sure we do the right thing when told to plot dates even
# if no date data has been presented, cf
# http://sourceforge.net/tracker/?func=detail&aid=2850075&group_id=80706&atid=560720
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.xaxis_date()
@image_comparison(['date_axhspan.png'])
def test_date_axhspan():
# test ax hspan with date inputs
t0 = datetime.datetime(2009, 1, 20)
tf = datetime.datetime(2009, 1, 21)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.axhspan(t0, tf, facecolor="blue", alpha=0.25)
ax.set_ylim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
fig.subplots_adjust(left=0.25)
@image_comparison(['date_axvspan.png'])
def test_date_axvspan():
# test ax hspan with date inputs
t0 = datetime.datetime(2000, 1, 20)
tf = datetime.datetime(2010, 1, 21)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.axvspan(t0, tf, facecolor="blue", alpha=0.25)
ax.set_xlim(t0 - datetime.timedelta(days=720),
tf + datetime.timedelta(days=720))
fig.autofmt_xdate()
@image_comparison(['date_axhline.png'])
def test_date_axhline():
# test ax hline with date inputs
t0 = datetime.datetime(2009, 1, 20)
tf = datetime.datetime(2009, 1, 31)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.axhline(t0, color="blue", lw=3)
ax.set_ylim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
fig.subplots_adjust(left=0.25)
@image_comparison(['date_axvline.png'])
def test_date_axvline():
# test ax hline with date inputs
t0 = datetime.datetime(2000, 1, 20)
tf = datetime.datetime(2000, 1, 21)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.axvline(t0, color="red", lw=3)
ax.set_xlim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
fig.autofmt_xdate()
def test_too_many_date_ticks(caplog):
# Attempt to test SF 2715172, see
# https://sourceforge.net/tracker/?func=detail&aid=2715172&group_id=80706&atid=560720
# setting equal datetimes triggers and expander call in
# transforms.nonsingular which results in too many ticks in the
# DayLocator. This should emit a log at WARNING level.
caplog.set_level("WARNING")
t0 = datetime.datetime(2000, 1, 20)
tf = datetime.datetime(2000, 1, 20)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
with pytest.warns(UserWarning) as rec:
ax.set_xlim((t0, tf), auto=True)
assert len(rec) == 1
assert \
'Attempting to set identical left == right' in str(rec[0].message)
ax.plot([], [])
ax.xaxis.set_major_locator(mdates.DayLocator())
fig.canvas.draw()
# The warning is emitted multiple times because the major locator is also
# called both when placing the minor ticks (for overstriking detection) and
# during tick label positioning.
assert caplog.records and all(
record.name == "matplotlib.ticker" and record.levelname == "WARNING"
for record in caplog.records)
@image_comparison(['RRuleLocator_bounds.png'])
def test_RRuleLocator():
import matplotlib.testing.jpl_units as units
units.register()
# This will cause the RRuleLocator to go out of bounds when it tries
# to add padding to the limits, so we make sure it caps at the correct
# boundary values.
t0 = datetime.datetime(1000, 1, 1)
tf = datetime.datetime(6000, 1, 1)
fig = plt.figure()
ax = plt.subplot(111)
ax.set_autoscale_on(True)
ax.plot([t0, tf], [0.0, 1.0], marker='o')
rrule = mdates.rrulewrapper(dateutil.rrule.YEARLY, interval=500)
locator = mdates.RRuleLocator(rrule)
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(mdates.AutoDateFormatter(locator))
ax.autoscale_view()
fig.autofmt_xdate()
def test_RRuleLocator_dayrange():
loc = mdates.DayLocator()
x1 = datetime.datetime(year=1, month=1, day=1, tzinfo=mdates.UTC)
y1 = datetime.datetime(year=1, month=1, day=16, tzinfo=mdates.UTC)
loc.tick_values(x1, y1)
# On success, no overflow error shall be thrown
@image_comparison(['DateFormatter_fractionalSeconds.png'])
def test_DateFormatter():
import matplotlib.testing.jpl_units as units
units.register()
# Lets make sure that DateFormatter will allow us to have tick marks
# at intervals of fractional seconds.
t0 = datetime.datetime(2001, 1, 1, 0, 0, 0)
tf = datetime.datetime(2001, 1, 1, 0, 0, 1)
fig = plt.figure()
ax = plt.subplot(111)
ax.set_autoscale_on(True)
ax.plot([t0, tf], [0.0, 1.0], marker='o')
# rrule = mpldates.rrulewrapper( dateutil.rrule.YEARLY, interval=500 )
# locator = mpldates.RRuleLocator( rrule )
# ax.xaxis.set_major_locator( locator )
# ax.xaxis.set_major_formatter( mpldates.AutoDateFormatter(locator) )
ax.autoscale_view()
fig.autofmt_xdate()
def test_locator_set_formatter():
"""
Test if setting the locator only will update the AutoDateFormatter to use
the new locator.
"""
plt.rcParams["date.autoformatter.minute"] = "%d %H:%M"
t = [datetime.datetime(2018, 9, 30, 8, 0),
datetime.datetime(2018, 9, 30, 8, 59),
datetime.datetime(2018, 9, 30, 10, 30)]
x = [2, 3, 1]
fig, ax = plt.subplots()
ax.plot(t, x)
ax.xaxis.set_major_locator(mdates.MinuteLocator((0, 30)))
fig.canvas.draw()
ticklabels = [tl.get_text() for tl in ax.get_xticklabels()]
expected = ['30 08:00', '30 08:30', '30 09:00',
'30 09:30', '30 10:00', '30 10:30']
assert ticklabels == expected
ax.xaxis.set_major_locator(mticker.NullLocator())
ax.xaxis.set_minor_locator(mdates.MinuteLocator((5, 55)))
decoy_loc = mdates.MinuteLocator((12, 27))
ax.xaxis.set_minor_formatter(mdates.AutoDateFormatter(decoy_loc))
ax.xaxis.set_minor_locator(mdates.MinuteLocator((15, 45)))
fig.canvas.draw()
ticklabels = [tl.get_text() for tl in ax.get_xticklabels(which="minor")]
expected = ['30 08:15', '30 08:45', '30 09:15', '30 09:45', '30 10:15']
assert ticklabels == expected
def test_date_formatter_callable():
class _Locator:
def _get_unit(self): return -11
def callable_formatting_function(dates, _):
return [dt.strftime('%d-%m//%Y') for dt in dates]
formatter = mdates.AutoDateFormatter(_Locator())
formatter.scaled[-10] = callable_formatting_function
assert formatter([datetime.datetime(2014, 12, 25)]) == ['25-12//2014']
def test_drange():
"""
This test should check if drange works as expected, and if all the
rounding errors are fixed
"""
start = datetime.datetime(2011, 1, 1, tzinfo=mdates.UTC)
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
delta = datetime.timedelta(hours=1)
# We expect 24 values in drange(start, end, delta), because drange returns
# dates from an half open interval [start, end)
assert len(mdates.drange(start, end, delta)) == 24
# if end is a little bit later, we expect the range to contain one element
# more
end = end + datetime.timedelta(microseconds=1)
assert len(mdates.drange(start, end, delta)) == 25
# reset end
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
# and tst drange with "complicated" floats:
# 4 hours = 1/6 day, this is an "dangerous" float
delta = datetime.timedelta(hours=4)
daterange = mdates.drange(start, end, delta)
assert len(daterange) == 6
assert mdates.num2date(daterange[-1]) == (end - delta)
def test_empty_date_with_year_formatter():
# exposes sf bug 2861426:
# https://sourceforge.net/tracker/?func=detail&aid=2861426&group_id=80706&atid=560720
# update: I am no longer believe this is a bug, as I commented on
# the tracker. The question is now: what to do with this test
import matplotlib.dates as dates
fig = plt.figure()
ax = fig.add_subplot(111)
yearFmt = dates.DateFormatter('%Y')
ax.xaxis.set_major_formatter(yearFmt)
with pytest.raises(ValueError):
fig.canvas.draw()
def test_auto_date_locator():
def _create_auto_date_locator(date1, date2):
locator = mdates.AutoDateLocator(interval_multiples=False)
locator.create_dummy_axis()
locator.set_view_interval(mdates.date2num(date1),
mdates.date2num(date2))
return locator
d1 = datetime.datetime(1990, 1, 1)
results = ([datetime.timedelta(weeks=52 * 200),
['1990-01-01 00:00:00+00:00', '2010-01-01 00:00:00+00:00',
'2030-01-01 00:00:00+00:00', '2050-01-01 00:00:00+00:00',
'2070-01-01 00:00:00+00:00', '2090-01-01 00:00:00+00:00',
'2110-01-01 00:00:00+00:00', '2130-01-01 00:00:00+00:00',
'2150-01-01 00:00:00+00:00', '2170-01-01 00:00:00+00:00']
],
[datetime.timedelta(weeks=52),
['1990-01-01 00:00:00+00:00', '1990-02-01 00:00:00+00:00',
'1990-03-01 00:00:00+00:00', '1990-04-01 00:00:00+00:00',
'1990-05-01 00:00:00+00:00', '1990-06-01 00:00:00+00:00',
'1990-07-01 00:00:00+00:00', '1990-08-01 00:00:00+00:00',
'1990-09-01 00:00:00+00:00', '1990-10-01 00:00:00+00:00',
'1990-11-01 00:00:00+00:00', '1990-12-01 00:00:00+00:00']
],
[datetime.timedelta(days=141),
['1990-01-05 00:00:00+00:00', '1990-01-26 00:00:00+00:00',
'1990-02-16 00:00:00+00:00', '1990-03-09 00:00:00+00:00',
'1990-03-30 00:00:00+00:00', '1990-04-20 00:00:00+00:00',
'1990-05-11 00:00:00+00:00']
],
[datetime.timedelta(days=40),
['1990-01-03 00:00:00+00:00', '1990-01-10 00:00:00+00:00',
'1990-01-17 00:00:00+00:00', '1990-01-24 00:00:00+00:00',
'1990-01-31 00:00:00+00:00', '1990-02-07 00:00:00+00:00']
],
[datetime.timedelta(hours=40),
['1990-01-01 00:00:00+00:00', '1990-01-01 04:00:00+00:00',
'1990-01-01 08:00:00+00:00', '1990-01-01 12:00:00+00:00',
'1990-01-01 16:00:00+00:00', '1990-01-01 20:00:00+00:00',
'1990-01-02 00:00:00+00:00', '1990-01-02 04:00:00+00:00',
'1990-01-02 08:00:00+00:00', '1990-01-02 12:00:00+00:00',
'1990-01-02 16:00:00+00:00']
],
[datetime.timedelta(minutes=20),
['1990-01-01 00:00:00+00:00', '1990-01-01 00:05:00+00:00',
'1990-01-01 00:10:00+00:00', '1990-01-01 00:15:00+00:00',
'1990-01-01 00:20:00+00:00']
],
[datetime.timedelta(seconds=40),
['1990-01-01 00:00:00+00:00', '1990-01-01 00:00:05+00:00',
'1990-01-01 00:00:10+00:00', '1990-01-01 00:00:15+00:00',
'1990-01-01 00:00:20+00:00', '1990-01-01 00:00:25+00:00',
'1990-01-01 00:00:30+00:00', '1990-01-01 00:00:35+00:00',
'1990-01-01 00:00:40+00:00']
],
[datetime.timedelta(microseconds=1500),
['1989-12-31 23:59:59.999500+00:00',
'1990-01-01 00:00:00+00:00',
'1990-01-01 00:00:00.000500+00:00',
'1990-01-01 00:00:00.001000+00:00',
'1990-01-01 00:00:00.001500+00:00']
],
)
for t_delta, expected in results:
d2 = d1 + t_delta
locator = _create_auto_date_locator(d1, d2)
with (pytest.warns(UserWarning) if t_delta.microseconds
else nullcontext()):
assert list(map(str, mdates.num2date(locator()))) == expected
def test_auto_date_locator_intmult():
def _create_auto_date_locator(date1, date2):
locator = mdates.AutoDateLocator(interval_multiples=True)
locator.create_dummy_axis()
locator.set_view_interval(mdates.date2num(date1),
mdates.date2num(date2))
return locator
results = ([datetime.timedelta(weeks=52 * 200),
['1980-01-01 00:00:00+00:00', '2000-01-01 00:00:00+00:00',
'2020-01-01 00:00:00+00:00', '2040-01-01 00:00:00+00:00',
'2060-01-01 00:00:00+00:00', '2080-01-01 00:00:00+00:00',
'2100-01-01 00:00:00+00:00', '2120-01-01 00:00:00+00:00',
'2140-01-01 00:00:00+00:00', '2160-01-01 00:00:00+00:00',
'2180-01-01 00:00:00+00:00', '2200-01-01 00:00:00+00:00']
],
[datetime.timedelta(weeks=52),
['1997-01-01 00:00:00+00:00', '1997-02-01 00:00:00+00:00',
'1997-03-01 00:00:00+00:00', '1997-04-01 00:00:00+00:00',
'1997-05-01 00:00:00+00:00', '1997-06-01 00:00:00+00:00',
'1997-07-01 00:00:00+00:00', '1997-08-01 00:00:00+00:00',
'1997-09-01 00:00:00+00:00', '1997-10-01 00:00:00+00:00',
'1997-11-01 00:00:00+00:00', '1997-12-01 00:00:00+00:00']
],
[datetime.timedelta(days=141),
['1997-01-01 00:00:00+00:00', '1997-01-22 00:00:00+00:00',
'1997-02-01 00:00:00+00:00', '1997-02-22 00:00:00+00:00',
'1997-03-01 00:00:00+00:00', '1997-03-22 00:00:00+00:00',
'1997-04-01 00:00:00+00:00', '1997-04-22 00:00:00+00:00',
'1997-05-01 00:00:00+00:00', '1997-05-22 00:00:00+00:00']
],
[datetime.timedelta(days=40),
['1997-01-01 00:00:00+00:00', '1997-01-05 00:00:00+00:00',
'1997-01-09 00:00:00+00:00', '1997-01-13 00:00:00+00:00',
'1997-01-17 00:00:00+00:00', '1997-01-21 00:00:00+00:00',
'1997-01-25 00:00:00+00:00', '1997-01-29 00:00:00+00:00',
'1997-02-01 00:00:00+00:00', '1997-02-05 00:00:00+00:00',
'1997-02-09 00:00:00+00:00']
],
[datetime.timedelta(hours=40),
['1997-01-01 00:00:00+00:00', '1997-01-01 04:00:00+00:00',
'1997-01-01 08:00:00+00:00', '1997-01-01 12:00:00+00:00',
'1997-01-01 16:00:00+00:00', '1997-01-01 20:00:00+00:00',
'1997-01-02 00:00:00+00:00', '1997-01-02 04:00:00+00:00',
'1997-01-02 08:00:00+00:00', '1997-01-02 12:00:00+00:00',
'1997-01-02 16:00:00+00:00']
],
[datetime.timedelta(minutes=20),
['1997-01-01 00:00:00+00:00', '1997-01-01 00:05:00+00:00',
'1997-01-01 00:10:00+00:00', '1997-01-01 00:15:00+00:00',
'1997-01-01 00:20:00+00:00']
],
[datetime.timedelta(seconds=40),
['1997-01-01 00:00:00+00:00', '1997-01-01 00:00:05+00:00',
'1997-01-01 00:00:10+00:00', '1997-01-01 00:00:15+00:00',
'1997-01-01 00:00:20+00:00', '1997-01-01 00:00:25+00:00',
'1997-01-01 00:00:30+00:00', '1997-01-01 00:00:35+00:00',
'1997-01-01 00:00:40+00:00']
],
[datetime.timedelta(microseconds=1500),
['1996-12-31 23:59:59.999500+00:00',
'1997-01-01 00:00:00+00:00',
'1997-01-01 00:00:00.000500+00:00',
'1997-01-01 00:00:00.001000+00:00',
'1997-01-01 00:00:00.001500+00:00']
],
)
d1 = datetime.datetime(1997, 1, 1)
for t_delta, expected in results:
d2 = d1 + t_delta
locator = _create_auto_date_locator(d1, d2)
with (pytest.warns(UserWarning) if t_delta.microseconds
else nullcontext()):
assert list(map(str, mdates.num2date(locator()))) == expected
def test_concise_formatter():
def _create_auto_date_locator(date1, date2):
fig, ax = plt.subplots()
locator = mdates.AutoDateLocator(interval_multiples=True)
formatter = mdates.ConciseDateFormatter(locator)
ax.yaxis.set_major_locator(locator)
ax.yaxis.set_major_formatter(formatter)
ax.set_ylim(date1, date2)
fig.canvas.draw()
sts = []
for st in ax.get_yticklabels():
sts += [st.get_text()]
return sts
d1 = datetime.datetime(1997, 1, 1)
results = ([datetime.timedelta(weeks=52 * 200),
[str(t) for t in range(1980, 2201, 20)]
],
[datetime.timedelta(weeks=52),
['1997', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug',
'Sep', 'Oct', 'Nov', 'Dec']
],
[datetime.timedelta(days=141),
['Jan', '22', 'Feb', '22', 'Mar', '22', 'Apr', '22',
'May', '22']
],
[datetime.timedelta(days=40),
['Jan', '05', '09', '13', '17', '21', '25', '29', 'Feb',
'05', '09']
],
[datetime.timedelta(hours=40),
['Jan-01', '04:00', '08:00', '12:00', '16:00', '20:00',
'Jan-02', '04:00', '08:00', '12:00', '16:00']
],
[datetime.timedelta(minutes=20),
['00:00', '00:05', '00:10', '00:15', '00:20']
],
[datetime.timedelta(seconds=40),
['00:00', '05', '10', '15', '20', '25', '30', '35', '40']
],
[datetime.timedelta(seconds=2),
['59.5', '00:00', '00.5', '01.0', '01.5', '02.0', '02.5']
],
)
for t_delta, expected in results:
d2 = d1 + t_delta
strings = _create_auto_date_locator(d1, d2)
assert strings == expected
def test_concise_formatter_tz():
def _create_auto_date_locator(date1, date2, tz):
fig, ax = plt.subplots()
locator = mdates.AutoDateLocator(interval_multiples=True)
formatter = mdates.ConciseDateFormatter(locator, tz=tz)
ax.yaxis.set_major_locator(locator)
ax.yaxis.set_major_formatter(formatter)
ax.set_ylim(date1, date2)
fig.canvas.draw()
sts = []
for st in ax.get_yticklabels():
sts += [st.get_text()]
return sts, ax.yaxis.get_offset_text().get_text()
d1 = datetime.datetime(1997, 1, 1).replace(tzinfo=datetime.timezone.utc)
results = ([datetime.timedelta(hours=40),
['03:00', '07:00', '11:00', '15:00', '19:00', '23:00',
'03:00', '07:00', '11:00', '15:00', '19:00'],
"1997-Jan-02"
],
[datetime.timedelta(minutes=20),
['03:00', '03:05', '03:10', '03:15', '03:20'],
"1997-Jan-01"
],
[datetime.timedelta(seconds=40),
['03:00', '05', '10', '15', '20', '25', '30', '35', '40'],
"1997-Jan-01 03:00"
],
[datetime.timedelta(seconds=2),
['59.5', '03:00', '00.5', '01.0', '01.5', '02.0', '02.5'],
"1997-Jan-01 03:00"
],
)
new_tz = datetime.timezone(datetime.timedelta(hours=3))
for t_delta, expected_strings, expected_offset in results:
d2 = d1 + t_delta
strings, offset = _create_auto_date_locator(d1, d2, new_tz)
assert strings == expected_strings
assert offset == expected_offset
def test_auto_date_locator_intmult_tz():
def _create_auto_date_locator(date1, date2, tz):
locator = mdates.AutoDateLocator(interval_multiples=True, tz=tz)
locator.create_dummy_axis()
locator.set_view_interval(mdates.date2num(date1),
mdates.date2num(date2))
return locator
results = ([datetime.timedelta(weeks=52*200),
['1980-01-01 00:00:00-08:00', '2000-01-01 00:00:00-08:00',
'2020-01-01 00:00:00-08:00', '2040-01-01 00:00:00-08:00',
'2060-01-01 00:00:00-08:00', '2080-01-01 00:00:00-08:00',
'2100-01-01 00:00:00-08:00', '2120-01-01 00:00:00-08:00',
'2140-01-01 00:00:00-08:00', '2160-01-01 00:00:00-08:00',
'2180-01-01 00:00:00-08:00', '2200-01-01 00:00:00-08:00']
],
[datetime.timedelta(weeks=52),
['1997-01-01 00:00:00-08:00', '1997-02-01 00:00:00-08:00',
'1997-03-01 00:00:00-08:00', '1997-04-01 00:00:00-08:00',
'1997-05-01 00:00:00-07:00', '1997-06-01 00:00:00-07:00',
'1997-07-01 00:00:00-07:00', '1997-08-01 00:00:00-07:00',
'1997-09-01 00:00:00-07:00', '1997-10-01 00:00:00-07:00',
'1997-11-01 00:00:00-08:00', '1997-12-01 00:00:00-08:00']
],
[datetime.timedelta(days=141),
['1997-01-01 00:00:00-08:00', '1997-01-22 00:00:00-08:00',
'1997-02-01 00:00:00-08:00', '1997-02-22 00:00:00-08:00',
'1997-03-01 00:00:00-08:00', '1997-03-22 00:00:00-08:00',
'1997-04-01 00:00:00-08:00', '1997-04-22 00:00:00-07:00',
'1997-05-01 00:00:00-07:00', '1997-05-22 00:00:00-07:00']
],
[datetime.timedelta(days=40),
['1997-01-01 00:00:00-08:00', '1997-01-05 00:00:00-08:00',
'1997-01-09 00:00:00-08:00', '1997-01-13 00:00:00-08:00',
'1997-01-17 00:00:00-08:00', '1997-01-21 00:00:00-08:00',
'1997-01-25 00:00:00-08:00', '1997-01-29 00:00:00-08:00',
'1997-02-01 00:00:00-08:00', '1997-02-05 00:00:00-08:00',
'1997-02-09 00:00:00-08:00']
],
[datetime.timedelta(hours=40),
['1997-01-01 00:00:00-08:00', '1997-01-01 04:00:00-08:00',
'1997-01-01 08:00:00-08:00', '1997-01-01 12:00:00-08:00',
'1997-01-01 16:00:00-08:00', '1997-01-01 20:00:00-08:00',
'1997-01-02 00:00:00-08:00', '1997-01-02 04:00:00-08:00',
'1997-01-02 08:00:00-08:00', '1997-01-02 12:00:00-08:00',
'1997-01-02 16:00:00-08:00']
],
[datetime.timedelta(minutes=20),
['1997-01-01 00:00:00-08:00', '1997-01-01 00:05:00-08:00',
'1997-01-01 00:10:00-08:00', '1997-01-01 00:15:00-08:00',
'1997-01-01 00:20:00-08:00']
],
[datetime.timedelta(seconds=40),
['1997-01-01 00:00:00-08:00', '1997-01-01 00:00:05-08:00',
'1997-01-01 00:00:10-08:00', '1997-01-01 00:00:15-08:00',
'1997-01-01 00:00:20-08:00', '1997-01-01 00:00:25-08:00',
'1997-01-01 00:00:30-08:00', '1997-01-01 00:00:35-08:00',
'1997-01-01 00:00:40-08:00']
]
)
tz = dateutil.tz.gettz('Canada/Pacific')
d1 = datetime.datetime(1997, 1, 1, tzinfo=tz)
for t_delta, expected in results:
with rc_context({'_internal.classic_mode': False}):
d2 = d1 + t_delta
locator = _create_auto_date_locator(d1, d2, tz)
st = list(map(str, mdates.num2date(locator(), tz=tz)))
assert st == expected
@image_comparison(['date_inverted_limit.png'])
def test_date_inverted_limit():
# test ax hline with date inputs
t0 = datetime.datetime(2009, 1, 20)
tf = datetime.datetime(2009, 1, 31)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.axhline(t0, color="blue", lw=3)
ax.set_ylim(t0 - datetime.timedelta(days=5),
tf + datetime.timedelta(days=5))
ax.invert_yaxis()
fig.subplots_adjust(left=0.25)
def _test_date2num_dst(date_range, tz_convert):
# Timezones
BRUSSELS = dateutil.tz.gettz('Europe/Brussels')
UTC = mdates.UTC
# Create a list of timezone-aware datetime objects in UTC
# Interval is 0b0.0000011 days, to prevent float rounding issues
dtstart = datetime.datetime(2014, 3, 30, 0, 0, tzinfo=UTC)
interval = datetime.timedelta(minutes=33, seconds=45)
interval_days = 0.0234375 # 2025 / 86400 seconds
N = 8
dt_utc = date_range(start=dtstart, freq=interval, periods=N)
dt_bxl = tz_convert(dt_utc, BRUSSELS)
expected_ordinalf = [735322.0 + (i * interval_days) for i in range(N)]
actual_ordinalf = list(mdates.date2num(dt_bxl))
assert actual_ordinalf == expected_ordinalf
def test_date2num_dst():
# Test for github issue #3896, but in date2num around DST transitions
# with a timezone-aware pandas date_range object.
class dt_tzaware(datetime.datetime):
"""
This bug specifically occurs because of the normalization behavior of
pandas Timestamp objects, so in order to replicate it, we need a
datetime-like object that applies timezone normalization after
subtraction.
"""
def __sub__(self, other):
r = super().__sub__(other)
tzinfo = getattr(r, 'tzinfo', None)
if tzinfo is not None:
localizer = getattr(tzinfo, 'normalize', None)
if localizer is not None:
r = tzinfo.normalize(r)
if isinstance(r, datetime.datetime):
r = self.mk_tzaware(r)
return r
def __add__(self, other):
return self.mk_tzaware(super().__add__(other))
def astimezone(self, tzinfo):
dt = super().astimezone(tzinfo)
return self.mk_tzaware(dt)
@classmethod
def mk_tzaware(cls, datetime_obj):
kwargs = {}
attrs = ('year',
'month',
'day',
'hour',
'minute',
'second',
'microsecond',
'tzinfo')
for attr in attrs:
val = getattr(datetime_obj, attr, None)
if val is not None:
kwargs[attr] = val
return cls(**kwargs)
# Define a date_range function similar to pandas.date_range
def date_range(start, freq, periods):
dtstart = dt_tzaware.mk_tzaware(start)
return [dtstart + (i * freq) for i in range(periods)]
# Define a tz_convert function that converts a list to a new time zone.
def tz_convert(dt_list, tzinfo):
return [d.astimezone(tzinfo) for d in dt_list]
_test_date2num_dst(date_range, tz_convert)
def test_date2num_dst_pandas(pd):
# Test for github issue #3896, but in date2num around DST transitions
# with a timezone-aware pandas date_range object.
def tz_convert(*args):
return pd.DatetimeIndex.tz_convert(*args).astype(object)
_test_date2num_dst(pd.date_range, tz_convert)
def _test_rrulewrapper(attach_tz, get_tz):
SYD = get_tz('Australia/Sydney')
dtstart = attach_tz(datetime.datetime(2017, 4, 1, 0), SYD)
dtend = attach_tz(datetime.datetime(2017, 4, 4, 0), SYD)
rule = mdates.rrulewrapper(freq=dateutil.rrule.DAILY, dtstart=dtstart)
act = rule.between(dtstart, dtend)
exp = [datetime.datetime(2017, 4, 1, 13, tzinfo=dateutil.tz.tzutc()),
datetime.datetime(2017, 4, 2, 14, tzinfo=dateutil.tz.tzutc())]
assert act == exp
def test_rrulewrapper():
def attach_tz(dt, zi):
return dt.replace(tzinfo=zi)
_test_rrulewrapper(attach_tz, dateutil.tz.gettz)
@pytest.mark.pytz
def test_rrulewrapper_pytz():
# Test to make sure pytz zones are supported in rrules
pytz = pytest.importorskip("pytz")
def attach_tz(dt, zi):
return zi.localize(dt)
_test_rrulewrapper(attach_tz, pytz.timezone)
@pytest.mark.pytz
def test_yearlocator_pytz():
pytz = pytest.importorskip("pytz")
tz = pytz.timezone('America/New_York')
x = [tz.localize(datetime.datetime(2010, 1, 1))
+ datetime.timedelta(i) for i in range(2000)]
locator = mdates.AutoDateLocator(interval_multiples=True, tz=tz)
locator.create_dummy_axis()
locator.set_view_interval(mdates.date2num(x[0])-1.0,
mdates.date2num(x[-1])+1.0)
np.testing.assert_allclose([733408.208333, 733773.208333, 734138.208333,
734503.208333, 734869.208333,
735234.208333, 735599.208333], locator())
expected = ['2009-01-01 00:00:00-05:00',
'2010-01-01 00:00:00-05:00', '2011-01-01 00:00:00-05:00',
'2012-01-01 00:00:00-05:00', '2013-01-01 00:00:00-05:00',
'2014-01-01 00:00:00-05:00', '2015-01-01 00:00:00-05:00']
st = list(map(str, mdates.num2date(locator(), tz=tz)))
assert st == expected
def test_DayLocator():
with pytest.raises(ValueError):
mdates.DayLocator(interval=-1)
with pytest.raises(ValueError):
mdates.DayLocator(interval=-1.5)
with pytest.raises(ValueError):
mdates.DayLocator(interval=0)
with pytest.raises(ValueError):
mdates.DayLocator(interval=1.3)
mdates.DayLocator(interval=1.0)
def test_tz_utc():
dt = datetime.datetime(1970, 1, 1, tzinfo=mdates.UTC)
dt.tzname()
@pytest.mark.parametrize("x, tdelta",
[(1, datetime.timedelta(days=1)),
([1, 1.5], [datetime.timedelta(days=1),
datetime.timedelta(days=1.5)])])
def test_num2timedelta(x, tdelta):
dt = mdates.num2timedelta(x)
assert dt == tdelta
def test_datetime64_in_list():
dt = [np.datetime64('2000-01-01'), np.datetime64('2001-01-01')]
dn = mdates.date2num(dt)
np.testing.assert_equal(dn, [730120., 730486.])