You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
335 lines
10 KiB
Python
335 lines
10 KiB
Python
# Natural Language Toolkit: API for alignment and translation objects
|
|
#
|
|
# Copyright (C) 2001-2020 NLTK Project
|
|
# Author: Will Zhang <wilzzha@gmail.com>
|
|
# Guan Gui <ggui@student.unimelb.edu.au>
|
|
# Steven Bird <stevenbird1@gmail.com>
|
|
# Tah Wei Hoon <hoon.tw@gmail.com>
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
import subprocess
|
|
from collections import namedtuple
|
|
|
|
|
|
class AlignedSent(object):
|
|
"""
|
|
Return an aligned sentence object, which encapsulates two sentences
|
|
along with an ``Alignment`` between them.
|
|
|
|
Typically used in machine translation to represent a sentence and
|
|
its translation.
|
|
|
|
>>> from nltk.translate import AlignedSent, Alignment
|
|
>>> algnsent = AlignedSent(['klein', 'ist', 'das', 'Haus'],
|
|
... ['the', 'house', 'is', 'small'], Alignment.fromstring('0-3 1-2 2-0 3-1'))
|
|
>>> algnsent.words
|
|
['klein', 'ist', 'das', 'Haus']
|
|
>>> algnsent.mots
|
|
['the', 'house', 'is', 'small']
|
|
>>> algnsent.alignment
|
|
Alignment([(0, 3), (1, 2), (2, 0), (3, 1)])
|
|
>>> from nltk.corpus import comtrans
|
|
>>> print(comtrans.aligned_sents()[54])
|
|
<AlignedSent: 'Weshalb also sollten...' -> 'So why should EU arm...'>
|
|
>>> print(comtrans.aligned_sents()[54].alignment)
|
|
0-0 0-1 1-0 2-2 3-4 3-5 4-7 5-8 6-3 7-9 8-9 9-10 9-11 10-12 11-6 12-6 13-13
|
|
|
|
:param words: Words in the target language sentence
|
|
:type words: list(str)
|
|
:param mots: Words in the source language sentence
|
|
:type mots: list(str)
|
|
:param alignment: Word-level alignments between ``words`` and ``mots``.
|
|
Each alignment is represented as a 2-tuple (words_index, mots_index).
|
|
:type alignment: Alignment
|
|
"""
|
|
|
|
def __init__(self, words, mots, alignment=None):
|
|
self._words = words
|
|
self._mots = mots
|
|
if alignment is None:
|
|
self.alignment = Alignment([])
|
|
else:
|
|
assert type(alignment) is Alignment
|
|
self.alignment = alignment
|
|
|
|
@property
|
|
def words(self):
|
|
return self._words
|
|
|
|
@property
|
|
def mots(self):
|
|
return self._mots
|
|
|
|
def _get_alignment(self):
|
|
return self._alignment
|
|
|
|
def _set_alignment(self, alignment):
|
|
_check_alignment(len(self.words), len(self.mots), alignment)
|
|
self._alignment = alignment
|
|
|
|
alignment = property(_get_alignment, _set_alignment)
|
|
|
|
def __repr__(self):
|
|
"""
|
|
Return a string representation for this ``AlignedSent``.
|
|
|
|
:rtype: str
|
|
"""
|
|
words = "[%s]" % (", ".join("'%s'" % w for w in self._words))
|
|
mots = "[%s]" % (", ".join("'%s'" % w for w in self._mots))
|
|
|
|
return "AlignedSent(%s, %s, %r)" % (words, mots, self._alignment)
|
|
|
|
def _to_dot(self):
|
|
"""
|
|
Dot representation of the aligned sentence
|
|
"""
|
|
s = "graph align {\n"
|
|
s += "node[shape=plaintext]\n"
|
|
|
|
# Declare node
|
|
for w in self._words:
|
|
s += '"%s_source" [label="%s"] \n' % (w, w)
|
|
|
|
for w in self._mots:
|
|
s += '"%s_target" [label="%s"] \n' % (w, w)
|
|
|
|
# Alignment
|
|
for u, v in self._alignment:
|
|
s += '"%s_source" -- "%s_target" \n' % (self._words[u], self._mots[v])
|
|
|
|
# Connect the source words
|
|
for i in range(len(self._words) - 1):
|
|
s += '"%s_source" -- "%s_source" [style=invis]\n' % (
|
|
self._words[i],
|
|
self._words[i + 1],
|
|
)
|
|
|
|
# Connect the target words
|
|
for i in range(len(self._mots) - 1):
|
|
s += '"%s_target" -- "%s_target" [style=invis]\n' % (
|
|
self._mots[i],
|
|
self._mots[i + 1],
|
|
)
|
|
|
|
# Put it in the same rank
|
|
s += "{rank = same; %s}\n" % (" ".join('"%s_source"' % w for w in self._words))
|
|
s += "{rank = same; %s}\n" % (" ".join('"%s_target"' % w for w in self._mots))
|
|
|
|
s += "}"
|
|
|
|
return s
|
|
|
|
def _repr_svg_(self):
|
|
"""
|
|
Ipython magic : show SVG representation of this ``AlignedSent``.
|
|
"""
|
|
dot_string = self._to_dot().encode("utf8")
|
|
output_format = "svg"
|
|
try:
|
|
process = subprocess.Popen(
|
|
["dot", "-T%s" % output_format],
|
|
stdin=subprocess.PIPE,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE,
|
|
)
|
|
except OSError:
|
|
raise Exception("Cannot find the dot binary from Graphviz package")
|
|
out, err = process.communicate(dot_string)
|
|
|
|
return out.decode("utf8")
|
|
|
|
def __str__(self):
|
|
"""
|
|
Return a human-readable string representation for this ``AlignedSent``.
|
|
|
|
:rtype: str
|
|
"""
|
|
source = " ".join(self._words)[:20] + "..."
|
|
target = " ".join(self._mots)[:20] + "..."
|
|
return "<AlignedSent: '%s' -> '%s'>" % (source, target)
|
|
|
|
def invert(self):
|
|
"""
|
|
Return the aligned sentence pair, reversing the directionality
|
|
|
|
:rtype: AlignedSent
|
|
"""
|
|
return AlignedSent(self._mots, self._words, self._alignment.invert())
|
|
|
|
|
|
class Alignment(frozenset):
|
|
"""
|
|
A storage class for representing alignment between two sequences, s1, s2.
|
|
In general, an alignment is a set of tuples of the form (i, j, ...)
|
|
representing an alignment between the i-th element of s1 and the
|
|
j-th element of s2. Tuples are extensible (they might contain
|
|
additional data, such as a boolean to indicate sure vs possible alignments).
|
|
|
|
>>> from nltk.translate import Alignment
|
|
>>> a = Alignment([(0, 0), (0, 1), (1, 2), (2, 2)])
|
|
>>> a.invert()
|
|
Alignment([(0, 0), (1, 0), (2, 1), (2, 2)])
|
|
>>> print(a.invert())
|
|
0-0 1-0 2-1 2-2
|
|
>>> a[0]
|
|
[(0, 1), (0, 0)]
|
|
>>> a.invert()[2]
|
|
[(2, 1), (2, 2)]
|
|
>>> b = Alignment([(0, 0), (0, 1)])
|
|
>>> b.issubset(a)
|
|
True
|
|
>>> c = Alignment.fromstring('0-0 0-1')
|
|
>>> b == c
|
|
True
|
|
"""
|
|
|
|
def __new__(cls, pairs):
|
|
self = frozenset.__new__(cls, pairs)
|
|
self._len = max(p[0] for p in self) if self != frozenset([]) else 0
|
|
self._index = None
|
|
return self
|
|
|
|
@classmethod
|
|
def fromstring(cls, s):
|
|
"""
|
|
Read a giza-formatted string and return an Alignment object.
|
|
|
|
>>> Alignment.fromstring('0-0 2-1 9-2 21-3 10-4 7-5')
|
|
Alignment([(0, 0), (2, 1), (7, 5), (9, 2), (10, 4), (21, 3)])
|
|
|
|
:type s: str
|
|
:param s: the positional alignments in giza format
|
|
:rtype: Alignment
|
|
:return: An Alignment object corresponding to the string representation ``s``.
|
|
"""
|
|
|
|
return Alignment([_giza2pair(a) for a in s.split()])
|
|
|
|
def __getitem__(self, key):
|
|
"""
|
|
Look up the alignments that map from a given index or slice.
|
|
"""
|
|
if not self._index:
|
|
self._build_index()
|
|
return self._index.__getitem__(key)
|
|
|
|
def invert(self):
|
|
"""
|
|
Return an Alignment object, being the inverted mapping.
|
|
"""
|
|
return Alignment(((p[1], p[0]) + p[2:]) for p in self)
|
|
|
|
def range(self, positions=None):
|
|
"""
|
|
Work out the range of the mapping from the given positions.
|
|
If no positions are specified, compute the range of the entire mapping.
|
|
"""
|
|
image = set()
|
|
if not self._index:
|
|
self._build_index()
|
|
if not positions:
|
|
positions = list(range(len(self._index)))
|
|
for p in positions:
|
|
image.update(f for _, f in self._index[p])
|
|
return sorted(image)
|
|
|
|
def __repr__(self):
|
|
"""
|
|
Produce a Giza-formatted string representing the alignment.
|
|
"""
|
|
return "Alignment(%r)" % sorted(self)
|
|
|
|
def __str__(self):
|
|
"""
|
|
Produce a Giza-formatted string representing the alignment.
|
|
"""
|
|
return " ".join("%d-%d" % p[:2] for p in sorted(self))
|
|
|
|
def _build_index(self):
|
|
"""
|
|
Build a list self._index such that self._index[i] is a list
|
|
of the alignments originating from word i.
|
|
"""
|
|
self._index = [[] for _ in range(self._len + 1)]
|
|
for p in self:
|
|
self._index[p[0]].append(p)
|
|
|
|
|
|
def _giza2pair(pair_string):
|
|
i, j = pair_string.split("-")
|
|
return int(i), int(j)
|
|
|
|
|
|
def _naacl2pair(pair_string):
|
|
i, j, p = pair_string.split("-")
|
|
return int(i), int(j)
|
|
|
|
|
|
def _check_alignment(num_words, num_mots, alignment):
|
|
"""
|
|
Check whether the alignments are legal.
|
|
|
|
:param num_words: the number of source language words
|
|
:type num_words: int
|
|
:param num_mots: the number of target language words
|
|
:type num_mots: int
|
|
:param alignment: alignment to be checked
|
|
:type alignment: Alignment
|
|
:raise IndexError: if alignment falls outside the sentence
|
|
"""
|
|
|
|
assert type(alignment) is Alignment
|
|
|
|
if not all(0 <= pair[0] < num_words for pair in alignment):
|
|
raise IndexError("Alignment is outside boundary of words")
|
|
if not all(pair[1] is None or 0 <= pair[1] < num_mots for pair in alignment):
|
|
raise IndexError("Alignment is outside boundary of mots")
|
|
|
|
|
|
PhraseTableEntry = namedtuple("PhraseTableEntry", ["trg_phrase", "log_prob"])
|
|
|
|
|
|
class PhraseTable(object):
|
|
"""
|
|
In-memory store of translations for a given phrase, and the log
|
|
probability of the those translations
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.src_phrases = dict()
|
|
|
|
def translations_for(self, src_phrase):
|
|
"""
|
|
Get the translations for a source language phrase
|
|
|
|
:param src_phrase: Source language phrase of interest
|
|
:type src_phrase: tuple(str)
|
|
|
|
:return: A list of target language phrases that are translations
|
|
of ``src_phrase``, ordered in decreasing order of
|
|
likelihood. Each list element is a tuple of the target
|
|
phrase and its log probability.
|
|
:rtype: list(PhraseTableEntry)
|
|
"""
|
|
return self.src_phrases[src_phrase]
|
|
|
|
def add(self, src_phrase, trg_phrase, log_prob):
|
|
"""
|
|
:type src_phrase: tuple(str)
|
|
:type trg_phrase: tuple(str)
|
|
|
|
:param log_prob: Log probability that given ``src_phrase``,
|
|
``trg_phrase`` is its translation
|
|
:type log_prob: float
|
|
"""
|
|
entry = PhraseTableEntry(trg_phrase=trg_phrase, log_prob=log_prob)
|
|
if src_phrase not in self.src_phrases:
|
|
self.src_phrases[src_phrase] = []
|
|
self.src_phrases[src_phrase].append(entry)
|
|
self.src_phrases[src_phrase].sort(key=lambda e: e.log_prob, reverse=True)
|
|
|
|
def __contains__(self, src_phrase):
|
|
return src_phrase in self.src_phrases
|