You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
478 lines
16 KiB
Python
478 lines
16 KiB
Python
# Natural Language Toolkit: TextTiling
|
|
#
|
|
# Copyright (C) 2001-2020 NLTK Project
|
|
# Author: George Boutsioukis
|
|
#
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
import re
|
|
import math
|
|
|
|
try:
|
|
import numpy
|
|
except ImportError:
|
|
pass
|
|
|
|
from nltk.tokenize.api import TokenizerI
|
|
|
|
BLOCK_COMPARISON, VOCABULARY_INTRODUCTION = 0, 1
|
|
LC, HC = 0, 1
|
|
DEFAULT_SMOOTHING = [0]
|
|
|
|
|
|
class TextTilingTokenizer(TokenizerI):
|
|
"""Tokenize a document into topical sections using the TextTiling algorithm.
|
|
This algorithm detects subtopic shifts based on the analysis of lexical
|
|
co-occurrence patterns.
|
|
|
|
The process starts by tokenizing the text into pseudosentences of
|
|
a fixed size w. Then, depending on the method used, similarity
|
|
scores are assigned at sentence gaps. The algorithm proceeds by
|
|
detecting the peak differences between these scores and marking
|
|
them as boundaries. The boundaries are normalized to the closest
|
|
paragraph break and the segmented text is returned.
|
|
|
|
:param w: Pseudosentence size
|
|
:type w: int
|
|
:param k: Size (in sentences) of the block used in the block comparison method
|
|
:type k: int
|
|
:param similarity_method: The method used for determining similarity scores:
|
|
`BLOCK_COMPARISON` (default) or `VOCABULARY_INTRODUCTION`.
|
|
:type similarity_method: constant
|
|
:param stopwords: A list of stopwords that are filtered out (defaults to NLTK's stopwords corpus)
|
|
:type stopwords: list(str)
|
|
:param smoothing_method: The method used for smoothing the score plot:
|
|
`DEFAULT_SMOOTHING` (default)
|
|
:type smoothing_method: constant
|
|
:param smoothing_width: The width of the window used by the smoothing method
|
|
:type smoothing_width: int
|
|
:param smoothing_rounds: The number of smoothing passes
|
|
:type smoothing_rounds: int
|
|
:param cutoff_policy: The policy used to determine the number of boundaries:
|
|
`HC` (default) or `LC`
|
|
:type cutoff_policy: constant
|
|
|
|
>>> from nltk.corpus import brown
|
|
>>> tt = TextTilingTokenizer(demo_mode=True)
|
|
>>> text = brown.raw()[:4000]
|
|
>>> s, ss, d, b = tt.tokenize(text)
|
|
>>> b
|
|
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
w=20,
|
|
k=10,
|
|
similarity_method=BLOCK_COMPARISON,
|
|
stopwords=None,
|
|
smoothing_method=DEFAULT_SMOOTHING,
|
|
smoothing_width=2,
|
|
smoothing_rounds=1,
|
|
cutoff_policy=HC,
|
|
demo_mode=False,
|
|
):
|
|
|
|
if stopwords is None:
|
|
from nltk.corpus import stopwords
|
|
|
|
stopwords = stopwords.words("english")
|
|
self.__dict__.update(locals())
|
|
del self.__dict__["self"]
|
|
|
|
def tokenize(self, text):
|
|
"""Return a tokenized copy of *text*, where each "token" represents
|
|
a separate topic."""
|
|
|
|
lowercase_text = text.lower()
|
|
paragraph_breaks = self._mark_paragraph_breaks(text)
|
|
text_length = len(lowercase_text)
|
|
|
|
# Tokenization step starts here
|
|
|
|
# Remove punctuation
|
|
nopunct_text = "".join(
|
|
c for c in lowercase_text if re.match("[a-z\-' \n\t]", c)
|
|
)
|
|
nopunct_par_breaks = self._mark_paragraph_breaks(nopunct_text)
|
|
|
|
tokseqs = self._divide_to_tokensequences(nopunct_text)
|
|
|
|
# The morphological stemming step mentioned in the TextTile
|
|
# paper is not implemented. A comment in the original C
|
|
# implementation states that it offers no benefit to the
|
|
# process. It might be interesting to test the existing
|
|
# stemmers though.
|
|
# words = _stem_words(words)
|
|
|
|
# Filter stopwords
|
|
for ts in tokseqs:
|
|
ts.wrdindex_list = [
|
|
wi for wi in ts.wrdindex_list if wi[0] not in self.stopwords
|
|
]
|
|
|
|
token_table = self._create_token_table(tokseqs, nopunct_par_breaks)
|
|
# End of the Tokenization step
|
|
|
|
# Lexical score determination
|
|
if self.similarity_method == BLOCK_COMPARISON:
|
|
gap_scores = self._block_comparison(tokseqs, token_table)
|
|
elif self.similarity_method == VOCABULARY_INTRODUCTION:
|
|
raise NotImplementedError("Vocabulary introduction not implemented")
|
|
else:
|
|
raise ValueError(
|
|
"Similarity method {} not recognized".format(self.similarity_method)
|
|
)
|
|
|
|
if self.smoothing_method == DEFAULT_SMOOTHING:
|
|
smooth_scores = self._smooth_scores(gap_scores)
|
|
else:
|
|
raise ValueError(
|
|
"Smoothing method {} not recognized".format(self.smoothing_method)
|
|
)
|
|
# End of Lexical score Determination
|
|
|
|
# Boundary identification
|
|
depth_scores = self._depth_scores(smooth_scores)
|
|
segment_boundaries = self._identify_boundaries(depth_scores)
|
|
|
|
normalized_boundaries = self._normalize_boundaries(
|
|
text, segment_boundaries, paragraph_breaks
|
|
)
|
|
# End of Boundary Identification
|
|
segmented_text = []
|
|
prevb = 0
|
|
|
|
for b in normalized_boundaries:
|
|
if b == 0:
|
|
continue
|
|
segmented_text.append(text[prevb:b])
|
|
prevb = b
|
|
|
|
if prevb < text_length: # append any text that may be remaining
|
|
segmented_text.append(text[prevb:])
|
|
|
|
if not segmented_text:
|
|
segmented_text = [text]
|
|
|
|
if self.demo_mode:
|
|
return gap_scores, smooth_scores, depth_scores, segment_boundaries
|
|
return segmented_text
|
|
|
|
def _block_comparison(self, tokseqs, token_table):
|
|
"""Implements the block comparison method"""
|
|
|
|
def blk_frq(tok, block):
|
|
ts_occs = filter(lambda o: o[0] in block, token_table[tok].ts_occurences)
|
|
freq = sum([tsocc[1] for tsocc in ts_occs])
|
|
return freq
|
|
|
|
gap_scores = []
|
|
numgaps = len(tokseqs) - 1
|
|
|
|
for curr_gap in range(numgaps):
|
|
score_dividend, score_divisor_b1, score_divisor_b2 = 0.0, 0.0, 0.0
|
|
score = 0.0
|
|
# adjust window size for boundary conditions
|
|
if curr_gap < self.k - 1:
|
|
window_size = curr_gap + 1
|
|
elif curr_gap > numgaps - self.k:
|
|
window_size = numgaps - curr_gap
|
|
else:
|
|
window_size = self.k
|
|
|
|
b1 = [ts.index for ts in tokseqs[curr_gap - window_size + 1 : curr_gap + 1]]
|
|
b2 = [ts.index for ts in tokseqs[curr_gap + 1 : curr_gap + window_size + 1]]
|
|
|
|
for t in token_table:
|
|
score_dividend += blk_frq(t, b1) * blk_frq(t, b2)
|
|
score_divisor_b1 += blk_frq(t, b1) ** 2
|
|
score_divisor_b2 += blk_frq(t, b2) ** 2
|
|
try:
|
|
score = score_dividend / math.sqrt(score_divisor_b1 * score_divisor_b2)
|
|
except ZeroDivisionError:
|
|
pass # score += 0.0
|
|
|
|
gap_scores.append(score)
|
|
|
|
return gap_scores
|
|
|
|
def _smooth_scores(self, gap_scores):
|
|
"Wraps the smooth function from the SciPy Cookbook"
|
|
return list(
|
|
smooth(numpy.array(gap_scores[:]), window_len=self.smoothing_width + 1)
|
|
)
|
|
|
|
def _mark_paragraph_breaks(self, text):
|
|
"""Identifies indented text or line breaks as the beginning of
|
|
paragraphs"""
|
|
MIN_PARAGRAPH = 100
|
|
pattern = re.compile("[ \t\r\f\v]*\n[ \t\r\f\v]*\n[ \t\r\f\v]*")
|
|
matches = pattern.finditer(text)
|
|
|
|
last_break = 0
|
|
pbreaks = [0]
|
|
for pb in matches:
|
|
if pb.start() - last_break < MIN_PARAGRAPH:
|
|
continue
|
|
else:
|
|
pbreaks.append(pb.start())
|
|
last_break = pb.start()
|
|
|
|
return pbreaks
|
|
|
|
def _divide_to_tokensequences(self, text):
|
|
"Divides the text into pseudosentences of fixed size"
|
|
w = self.w
|
|
wrdindex_list = []
|
|
matches = re.finditer("\w+", text)
|
|
for match in matches:
|
|
wrdindex_list.append((match.group(), match.start()))
|
|
return [
|
|
TokenSequence(i / w, wrdindex_list[i : i + w])
|
|
for i in range(0, len(wrdindex_list), w)
|
|
]
|
|
|
|
def _create_token_table(self, token_sequences, par_breaks):
|
|
"Creates a table of TokenTableFields"
|
|
token_table = {}
|
|
current_par = 0
|
|
current_tok_seq = 0
|
|
pb_iter = par_breaks.__iter__()
|
|
current_par_break = next(pb_iter)
|
|
if current_par_break == 0:
|
|
try:
|
|
current_par_break = next(pb_iter) # skip break at 0
|
|
except StopIteration:
|
|
raise ValueError(
|
|
"No paragraph breaks were found(text too short perhaps?)"
|
|
)
|
|
for ts in token_sequences:
|
|
for word, index in ts.wrdindex_list:
|
|
try:
|
|
while index > current_par_break:
|
|
current_par_break = next(pb_iter)
|
|
current_par += 1
|
|
except StopIteration:
|
|
# hit bottom
|
|
pass
|
|
|
|
if word in token_table:
|
|
token_table[word].total_count += 1
|
|
|
|
if token_table[word].last_par != current_par:
|
|
token_table[word].last_par = current_par
|
|
token_table[word].par_count += 1
|
|
|
|
if token_table[word].last_tok_seq != current_tok_seq:
|
|
token_table[word].last_tok_seq = current_tok_seq
|
|
token_table[word].ts_occurences.append([current_tok_seq, 1])
|
|
else:
|
|
token_table[word].ts_occurences[-1][1] += 1
|
|
else: # new word
|
|
token_table[word] = TokenTableField(
|
|
first_pos=index,
|
|
ts_occurences=[[current_tok_seq, 1]],
|
|
total_count=1,
|
|
par_count=1,
|
|
last_par=current_par,
|
|
last_tok_seq=current_tok_seq,
|
|
)
|
|
|
|
current_tok_seq += 1
|
|
|
|
return token_table
|
|
|
|
def _identify_boundaries(self, depth_scores):
|
|
"""Identifies boundaries at the peaks of similarity score
|
|
differences"""
|
|
|
|
boundaries = [0 for x in depth_scores]
|
|
|
|
avg = sum(depth_scores) / len(depth_scores)
|
|
stdev = numpy.std(depth_scores)
|
|
|
|
# SB: what is the purpose of this conditional?
|
|
if self.cutoff_policy == LC:
|
|
cutoff = avg - stdev / 2.0
|
|
else:
|
|
cutoff = avg - stdev / 2.0
|
|
|
|
depth_tuples = sorted(zip(depth_scores, range(len(depth_scores))))
|
|
depth_tuples.reverse()
|
|
hp = list(filter(lambda x: x[0] > cutoff, depth_tuples))
|
|
|
|
for dt in hp:
|
|
boundaries[dt[1]] = 1
|
|
for dt2 in hp: # undo if there is a boundary close already
|
|
if (
|
|
dt[1] != dt2[1]
|
|
and abs(dt2[1] - dt[1]) < 4
|
|
and boundaries[dt2[1]] == 1
|
|
):
|
|
boundaries[dt[1]] = 0
|
|
return boundaries
|
|
|
|
def _depth_scores(self, scores):
|
|
"""Calculates the depth of each gap, i.e. the average difference
|
|
between the left and right peaks and the gap's score"""
|
|
|
|
depth_scores = [0 for x in scores]
|
|
# clip boundaries: this holds on the rule of thumb(my thumb)
|
|
# that a section shouldn't be smaller than at least 2
|
|
# pseudosentences for small texts and around 5 for larger ones.
|
|
|
|
clip = min(max(len(scores) // 10, 2), 5)
|
|
index = clip
|
|
|
|
for gapscore in scores[clip:-clip]:
|
|
lpeak = gapscore
|
|
for score in scores[index::-1]:
|
|
if score >= lpeak:
|
|
lpeak = score
|
|
else:
|
|
break
|
|
rpeak = gapscore
|
|
for score in scores[index:]:
|
|
if score >= rpeak:
|
|
rpeak = score
|
|
else:
|
|
break
|
|
depth_scores[index] = lpeak + rpeak - 2 * gapscore
|
|
index += 1
|
|
|
|
return depth_scores
|
|
|
|
def _normalize_boundaries(self, text, boundaries, paragraph_breaks):
|
|
"""Normalize the boundaries identified to the original text's
|
|
paragraph breaks"""
|
|
|
|
norm_boundaries = []
|
|
char_count, word_count, gaps_seen = 0, 0, 0
|
|
seen_word = False
|
|
|
|
for char in text:
|
|
char_count += 1
|
|
if char in " \t\n" and seen_word:
|
|
seen_word = False
|
|
word_count += 1
|
|
if char not in " \t\n" and not seen_word:
|
|
seen_word = True
|
|
if gaps_seen < len(boundaries) and word_count > (
|
|
max(gaps_seen * self.w, self.w)
|
|
):
|
|
if boundaries[gaps_seen] == 1:
|
|
# find closest paragraph break
|
|
best_fit = len(text)
|
|
for br in paragraph_breaks:
|
|
if best_fit > abs(br - char_count):
|
|
best_fit = abs(br - char_count)
|
|
bestbr = br
|
|
else:
|
|
break
|
|
if bestbr not in norm_boundaries: # avoid duplicates
|
|
norm_boundaries.append(bestbr)
|
|
gaps_seen += 1
|
|
|
|
return norm_boundaries
|
|
|
|
|
|
class TokenTableField(object):
|
|
"""A field in the token table holding parameters for each token,
|
|
used later in the process"""
|
|
|
|
def __init__(
|
|
self,
|
|
first_pos,
|
|
ts_occurences,
|
|
total_count=1,
|
|
par_count=1,
|
|
last_par=0,
|
|
last_tok_seq=None,
|
|
):
|
|
self.__dict__.update(locals())
|
|
del self.__dict__["self"]
|
|
|
|
|
|
class TokenSequence(object):
|
|
"A token list with its original length and its index"
|
|
|
|
def __init__(self, index, wrdindex_list, original_length=None):
|
|
original_length = original_length or len(wrdindex_list)
|
|
self.__dict__.update(locals())
|
|
del self.__dict__["self"]
|
|
|
|
|
|
# Pasted from the SciPy cookbook: http://www.scipy.org/Cookbook/SignalSmooth
|
|
def smooth(x, window_len=11, window="flat"):
|
|
"""smooth the data using a window with requested size.
|
|
|
|
This method is based on the convolution of a scaled window with the signal.
|
|
The signal is prepared by introducing reflected copies of the signal
|
|
(with the window size) in both ends so that transient parts are minimized
|
|
in the beginning and end part of the output signal.
|
|
|
|
:param x: the input signal
|
|
:param window_len: the dimension of the smoothing window; should be an odd integer
|
|
:param window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
|
|
flat window will produce a moving average smoothing.
|
|
|
|
:return: the smoothed signal
|
|
|
|
example::
|
|
|
|
t=linspace(-2,2,0.1)
|
|
x=sin(t)+randn(len(t))*0.1
|
|
y=smooth(x)
|
|
|
|
:see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve,
|
|
scipy.signal.lfilter
|
|
|
|
TODO: the window parameter could be the window itself if an array instead of a string
|
|
"""
|
|
|
|
if x.ndim != 1:
|
|
raise ValueError("smooth only accepts 1 dimension arrays.")
|
|
|
|
if x.size < window_len:
|
|
raise ValueError("Input vector needs to be bigger than window size.")
|
|
|
|
if window_len < 3:
|
|
return x
|
|
|
|
if window not in ["flat", "hanning", "hamming", "bartlett", "blackman"]:
|
|
raise ValueError(
|
|
"Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'"
|
|
)
|
|
|
|
s = numpy.r_[2 * x[0] - x[window_len:1:-1], x, 2 * x[-1] - x[-1:-window_len:-1]]
|
|
|
|
# print(len(s))
|
|
if window == "flat": # moving average
|
|
w = numpy.ones(window_len, "d")
|
|
else:
|
|
w = eval("numpy." + window + "(window_len)")
|
|
|
|
y = numpy.convolve(w / w.sum(), s, mode="same")
|
|
|
|
return y[window_len - 1 : -window_len + 1]
|
|
|
|
|
|
def demo(text=None):
|
|
from nltk.corpus import brown
|
|
from matplotlib import pylab
|
|
|
|
tt = TextTilingTokenizer(demo_mode=True)
|
|
if text is None:
|
|
text = brown.raw()[:10000]
|
|
s, ss, d, b = tt.tokenize(text)
|
|
pylab.xlabel("Sentence Gap index")
|
|
pylab.ylabel("Gap Scores")
|
|
pylab.plot(range(len(s)), s, label="Gap Scores")
|
|
pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores")
|
|
pylab.plot(range(len(d)), d, label="Depth scores")
|
|
pylab.stem(range(len(b)), b)
|
|
pylab.legend()
|
|
pylab.show()
|