You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
12 KiB
Python
351 lines
12 KiB
Python
# Natural Language Toolkit: Decision Tree Classifiers
|
|
#
|
|
# Copyright (C) 2001-2019 NLTK Project
|
|
# Author: Edward Loper <edloper@gmail.com>
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
"""
|
|
A classifier model that decides which label to assign to a token on
|
|
the basis of a tree structure, where branches correspond to conditions
|
|
on feature values, and leaves correspond to label assignments.
|
|
"""
|
|
from __future__ import print_function, unicode_literals, division
|
|
|
|
from collections import defaultdict
|
|
|
|
from nltk.probability import FreqDist, MLEProbDist, entropy
|
|
from nltk.classify.api import ClassifierI
|
|
from nltk.compat import python_2_unicode_compatible
|
|
|
|
|
|
@python_2_unicode_compatible
|
|
class DecisionTreeClassifier(ClassifierI):
|
|
def __init__(self, label, feature_name=None, decisions=None, default=None):
|
|
"""
|
|
:param label: The most likely label for tokens that reach
|
|
this node in the decision tree. If this decision tree
|
|
has no children, then this label will be assigned to
|
|
any token that reaches this decision tree.
|
|
:param feature_name: The name of the feature that this
|
|
decision tree selects for.
|
|
:param decisions: A dictionary mapping from feature values
|
|
for the feature identified by ``feature_name`` to
|
|
child decision trees.
|
|
:param default: The child that will be used if the value of
|
|
feature ``feature_name`` does not match any of the keys in
|
|
``decisions``. This is used when constructing binary
|
|
decision trees.
|
|
"""
|
|
self._label = label
|
|
self._fname = feature_name
|
|
self._decisions = decisions
|
|
self._default = default
|
|
|
|
def labels(self):
|
|
labels = [self._label]
|
|
if self._decisions is not None:
|
|
for dt in self._decisions.values():
|
|
labels.extend(dt.labels())
|
|
if self._default is not None:
|
|
labels.extend(self._default.labels())
|
|
return list(set(labels))
|
|
|
|
def classify(self, featureset):
|
|
# Decision leaf:
|
|
if self._fname is None:
|
|
return self._label
|
|
|
|
# Decision tree:
|
|
fval = featureset.get(self._fname)
|
|
if fval in self._decisions:
|
|
return self._decisions[fval].classify(featureset)
|
|
elif self._default is not None:
|
|
return self._default.classify(featureset)
|
|
else:
|
|
return self._label
|
|
|
|
def error(self, labeled_featuresets):
|
|
errors = 0
|
|
for featureset, label in labeled_featuresets:
|
|
if self.classify(featureset) != label:
|
|
errors += 1
|
|
return errors / len(labeled_featuresets)
|
|
|
|
def pretty_format(self, width=70, prefix='', depth=4):
|
|
"""
|
|
Return a string containing a pretty-printed version of this
|
|
decision tree. Each line in this string corresponds to a
|
|
single decision tree node or leaf, and indentation is used to
|
|
display the structure of the decision tree.
|
|
"""
|
|
# [xx] display default!!
|
|
if self._fname is None:
|
|
n = width - len(prefix) - 15
|
|
return '{0}{1} {2}\n'.format(prefix, '.' * n, self._label)
|
|
s = ''
|
|
for i, (fval, result) in enumerate(sorted(self._decisions.items())):
|
|
hdr = '{0}{1}={2}? '.format(prefix, self._fname, fval)
|
|
n = width - 15 - len(hdr)
|
|
s += '{0}{1} {2}\n'.format(hdr, '.' * (n), result._label)
|
|
if result._fname is not None and depth > 1:
|
|
s += result.pretty_format(width, prefix + ' ', depth - 1)
|
|
if self._default is not None:
|
|
n = width - len(prefix) - 21
|
|
s += '{0}else: {1} {2}\n'.format(prefix, '.' * n, self._default._label)
|
|
if self._default._fname is not None and depth > 1:
|
|
s += self._default.pretty_format(width, prefix + ' ', depth - 1)
|
|
return s
|
|
|
|
def pseudocode(self, prefix='', depth=4):
|
|
"""
|
|
Return a string representation of this decision tree that
|
|
expresses the decisions it makes as a nested set of pseudocode
|
|
if statements.
|
|
"""
|
|
if self._fname is None:
|
|
return "{0}return {1!r}\n".format(prefix, self._label)
|
|
s = ''
|
|
for (fval, result) in sorted(self._decisions.items()):
|
|
s += '{0}if {1} == {2!r}: '.format(prefix, self._fname, fval)
|
|
if result._fname is not None and depth > 1:
|
|
s += '\n' + result.pseudocode(prefix + ' ', depth - 1)
|
|
else:
|
|
s += 'return {0!r}\n'.format(result._label)
|
|
if self._default is not None:
|
|
if len(self._decisions) == 1:
|
|
s += '{0}if {1} != {2!r}: '.format(
|
|
prefix, self._fname, list(self._decisions.keys())[0]
|
|
)
|
|
else:
|
|
s += '{0}else: '.format(prefix)
|
|
if self._default._fname is not None and depth > 1:
|
|
s += '\n' + self._default.pseudocode(prefix + ' ', depth - 1)
|
|
else:
|
|
s += 'return {0!r}\n'.format(self._default._label)
|
|
return s
|
|
|
|
def __str__(self):
|
|
return self.pretty_format()
|
|
|
|
@staticmethod
|
|
def train(
|
|
labeled_featuresets,
|
|
entropy_cutoff=0.05,
|
|
depth_cutoff=100,
|
|
support_cutoff=10,
|
|
binary=False,
|
|
feature_values=None,
|
|
verbose=False,
|
|
):
|
|
"""
|
|
:param binary: If true, then treat all feature/value pairs as
|
|
individual binary features, rather than using a single n-way
|
|
branch for each feature.
|
|
"""
|
|
# Collect a list of all feature names.
|
|
feature_names = set()
|
|
for featureset, label in labeled_featuresets:
|
|
for fname in featureset:
|
|
feature_names.add(fname)
|
|
|
|
# Collect a list of the values each feature can take.
|
|
if feature_values is None and binary:
|
|
feature_values = defaultdict(set)
|
|
for featureset, label in labeled_featuresets:
|
|
for fname, fval in featureset.items():
|
|
feature_values[fname].add(fval)
|
|
|
|
# Start with a stump.
|
|
if not binary:
|
|
tree = DecisionTreeClassifier.best_stump(
|
|
feature_names, labeled_featuresets, verbose
|
|
)
|
|
else:
|
|
tree = DecisionTreeClassifier.best_binary_stump(
|
|
feature_names, labeled_featuresets, feature_values, verbose
|
|
)
|
|
|
|
# Refine the stump.
|
|
tree.refine(
|
|
labeled_featuresets,
|
|
entropy_cutoff,
|
|
depth_cutoff - 1,
|
|
support_cutoff,
|
|
binary,
|
|
feature_values,
|
|
verbose,
|
|
)
|
|
|
|
# Return it
|
|
return tree
|
|
|
|
@staticmethod
|
|
def leaf(labeled_featuresets):
|
|
label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
|
|
return DecisionTreeClassifier(label)
|
|
|
|
@staticmethod
|
|
def stump(feature_name, labeled_featuresets):
|
|
label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
|
|
|
|
# Find the best label for each value.
|
|
freqs = defaultdict(FreqDist) # freq(label|value)
|
|
for featureset, label in labeled_featuresets:
|
|
feature_value = featureset.get(feature_name)
|
|
freqs[feature_value][label] += 1
|
|
|
|
decisions = dict(
|
|
(val, DecisionTreeClassifier(freqs[val].max())) for val in freqs
|
|
)
|
|
return DecisionTreeClassifier(label, feature_name, decisions)
|
|
|
|
def refine(
|
|
self,
|
|
labeled_featuresets,
|
|
entropy_cutoff,
|
|
depth_cutoff,
|
|
support_cutoff,
|
|
binary=False,
|
|
feature_values=None,
|
|
verbose=False,
|
|
):
|
|
if len(labeled_featuresets) <= support_cutoff:
|
|
return
|
|
if self._fname is None:
|
|
return
|
|
if depth_cutoff <= 0:
|
|
return
|
|
for fval in self._decisions:
|
|
fval_featuresets = [
|
|
(featureset, label)
|
|
for (featureset, label) in labeled_featuresets
|
|
if featureset.get(self._fname) == fval
|
|
]
|
|
|
|
label_freqs = FreqDist(label for (featureset, label) in fval_featuresets)
|
|
if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:
|
|
self._decisions[fval] = DecisionTreeClassifier.train(
|
|
fval_featuresets,
|
|
entropy_cutoff,
|
|
depth_cutoff,
|
|
support_cutoff,
|
|
binary,
|
|
feature_values,
|
|
verbose,
|
|
)
|
|
if self._default is not None:
|
|
default_featuresets = [
|
|
(featureset, label)
|
|
for (featureset, label) in labeled_featuresets
|
|
if featureset.get(self._fname) not in self._decisions
|
|
]
|
|
label_freqs = FreqDist(label for (featureset, label) in default_featuresets)
|
|
if entropy(MLEProbDist(label_freqs)) > entropy_cutoff:
|
|
self._default = DecisionTreeClassifier.train(
|
|
default_featuresets,
|
|
entropy_cutoff,
|
|
depth_cutoff,
|
|
support_cutoff,
|
|
binary,
|
|
feature_values,
|
|
verbose,
|
|
)
|
|
|
|
@staticmethod
|
|
def best_stump(feature_names, labeled_featuresets, verbose=False):
|
|
best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)
|
|
best_error = best_stump.error(labeled_featuresets)
|
|
for fname in feature_names:
|
|
stump = DecisionTreeClassifier.stump(fname, labeled_featuresets)
|
|
stump_error = stump.error(labeled_featuresets)
|
|
if stump_error < best_error:
|
|
best_error = stump_error
|
|
best_stump = stump
|
|
if verbose:
|
|
print(
|
|
(
|
|
'best stump for {:6d} toks uses {:20} err={:6.4f}'.format(
|
|
len(labeled_featuresets), best_stump._fname, best_error
|
|
)
|
|
)
|
|
)
|
|
return best_stump
|
|
|
|
@staticmethod
|
|
def binary_stump(feature_name, feature_value, labeled_featuresets):
|
|
label = FreqDist(label for (featureset, label) in labeled_featuresets).max()
|
|
|
|
# Find the best label for each value.
|
|
pos_fdist = FreqDist()
|
|
neg_fdist = FreqDist()
|
|
for featureset, label in labeled_featuresets:
|
|
if featureset.get(feature_name) == feature_value:
|
|
pos_fdist[label] += 1
|
|
else:
|
|
neg_fdist[label] += 1
|
|
|
|
decisions = {}
|
|
default = label
|
|
# But hopefully we have observations!
|
|
if pos_fdist.N() > 0:
|
|
decisions = {feature_value: DecisionTreeClassifier(pos_fdist.max())}
|
|
if neg_fdist.N() > 0:
|
|
default = DecisionTreeClassifier(neg_fdist.max())
|
|
|
|
return DecisionTreeClassifier(label, feature_name, decisions, default)
|
|
|
|
@staticmethod
|
|
def best_binary_stump(
|
|
feature_names, labeled_featuresets, feature_values, verbose=False
|
|
):
|
|
best_stump = DecisionTreeClassifier.leaf(labeled_featuresets)
|
|
best_error = best_stump.error(labeled_featuresets)
|
|
for fname in feature_names:
|
|
for fval in feature_values[fname]:
|
|
stump = DecisionTreeClassifier.binary_stump(
|
|
fname, fval, labeled_featuresets
|
|
)
|
|
stump_error = stump.error(labeled_featuresets)
|
|
if stump_error < best_error:
|
|
best_error = stump_error
|
|
best_stump = stump
|
|
if verbose:
|
|
if best_stump._decisions:
|
|
descr = '{0}={1}'.format(
|
|
best_stump._fname, list(best_stump._decisions.keys())[0]
|
|
)
|
|
else:
|
|
descr = '(default)'
|
|
print(
|
|
(
|
|
'best stump for {:6d} toks uses {:20} err={:6.4f}'.format(
|
|
len(labeled_featuresets), descr, best_error
|
|
)
|
|
)
|
|
)
|
|
return best_stump
|
|
|
|
|
|
##//////////////////////////////////////////////////////
|
|
## Demo
|
|
##//////////////////////////////////////////////////////
|
|
|
|
|
|
def f(x):
|
|
return DecisionTreeClassifier.train(x, binary=True, verbose=True)
|
|
|
|
|
|
def demo():
|
|
from nltk.classify.util import names_demo, binary_names_demo_features
|
|
|
|
classifier = names_demo(
|
|
f, binary_names_demo_features # DecisionTreeClassifier.train,
|
|
)
|
|
print(classifier.pp(depth=7))
|
|
print(classifier.pseudocode(depth=7))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
demo()
|