You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
196 lines
6.3 KiB
Python
196 lines
6.3 KiB
Python
# Natural Language Toolkit: Classifier Interface
|
|
#
|
|
# Copyright (C) 2001-2019 NLTK Project
|
|
# Author: Edward Loper <edloper@gmail.com>
|
|
# Steven Bird <stevenbird1@gmail.com> (minor additions)
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
"""
|
|
Interfaces for labeling tokens with category labels (or "class labels").
|
|
|
|
``ClassifierI`` is a standard interface for "single-category
|
|
classification", in which the set of categories is known, the number
|
|
of categories is finite, and each text belongs to exactly one
|
|
category.
|
|
|
|
``MultiClassifierI`` is a standard interface for "multi-category
|
|
classification", which is like single-category classification except
|
|
that each text belongs to zero or more categories.
|
|
"""
|
|
from nltk.internals import overridden
|
|
|
|
##//////////////////////////////////////////////////////
|
|
# { Classification Interfaces
|
|
##//////////////////////////////////////////////////////
|
|
|
|
|
|
class ClassifierI(object):
|
|
"""
|
|
A processing interface for labeling tokens with a single category
|
|
label (or "class"). Labels are typically strs or
|
|
ints, but can be any immutable type. The set of labels
|
|
that the classifier chooses from must be fixed and finite.
|
|
|
|
Subclasses must define:
|
|
- ``labels()``
|
|
- either ``classify()`` or ``classify_many()`` (or both)
|
|
|
|
Subclasses may define:
|
|
- either ``prob_classify()`` or ``prob_classify_many()`` (or both)
|
|
"""
|
|
|
|
def labels(self):
|
|
"""
|
|
:return: the list of category labels used by this classifier.
|
|
:rtype: list of (immutable)
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def classify(self, featureset):
|
|
"""
|
|
:return: the most appropriate label for the given featureset.
|
|
:rtype: label
|
|
"""
|
|
if overridden(self.classify_many):
|
|
return self.classify_many([featureset])[0]
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def prob_classify(self, featureset):
|
|
"""
|
|
:return: a probability distribution over labels for the given
|
|
featureset.
|
|
:rtype: ProbDistI
|
|
"""
|
|
if overridden(self.prob_classify_many):
|
|
return self.prob_classify_many([featureset])[0]
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def classify_many(self, featuresets):
|
|
"""
|
|
Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
|
|
|
|
return [self.classify(fs) for fs in featuresets]
|
|
|
|
:rtype: list(label)
|
|
"""
|
|
return [self.classify(fs) for fs in featuresets]
|
|
|
|
def prob_classify_many(self, featuresets):
|
|
"""
|
|
Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
|
|
|
|
return [self.prob_classify(fs) for fs in featuresets]
|
|
|
|
:rtype: list(ProbDistI)
|
|
"""
|
|
return [self.prob_classify(fs) for fs in featuresets]
|
|
|
|
|
|
class MultiClassifierI(object):
|
|
"""
|
|
A processing interface for labeling tokens with zero or more
|
|
category labels (or "labels"). Labels are typically strs
|
|
or ints, but can be any immutable type. The set of labels
|
|
that the multi-classifier chooses from must be fixed and finite.
|
|
|
|
Subclasses must define:
|
|
- ``labels()``
|
|
- either ``classify()`` or ``classify_many()`` (or both)
|
|
|
|
Subclasses may define:
|
|
- either ``prob_classify()`` or ``prob_classify_many()`` (or both)
|
|
"""
|
|
|
|
def labels(self):
|
|
"""
|
|
:return: the list of category labels used by this classifier.
|
|
:rtype: list of (immutable)
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def classify(self, featureset):
|
|
"""
|
|
:return: the most appropriate set of labels for the given featureset.
|
|
:rtype: set(label)
|
|
"""
|
|
if overridden(self.classify_many):
|
|
return self.classify_many([featureset])[0]
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def prob_classify(self, featureset):
|
|
"""
|
|
:return: a probability distribution over sets of labels for the
|
|
given featureset.
|
|
:rtype: ProbDistI
|
|
"""
|
|
if overridden(self.prob_classify_many):
|
|
return self.prob_classify_many([featureset])[0]
|
|
else:
|
|
raise NotImplementedError()
|
|
|
|
def classify_many(self, featuresets):
|
|
"""
|
|
Apply ``self.classify()`` to each element of ``featuresets``. I.e.:
|
|
|
|
return [self.classify(fs) for fs in featuresets]
|
|
|
|
:rtype: list(set(label))
|
|
"""
|
|
return [self.classify(fs) for fs in featuresets]
|
|
|
|
def prob_classify_many(self, featuresets):
|
|
"""
|
|
Apply ``self.prob_classify()`` to each element of ``featuresets``. I.e.:
|
|
|
|
return [self.prob_classify(fs) for fs in featuresets]
|
|
|
|
:rtype: list(ProbDistI)
|
|
"""
|
|
return [self.prob_classify(fs) for fs in featuresets]
|
|
|
|
|
|
# # [XX] IN PROGRESS:
|
|
# class SequenceClassifierI(object):
|
|
# """
|
|
# A processing interface for labeling sequences of tokens with a
|
|
# single category label (or "class"). Labels are typically
|
|
# strs or ints, but can be any immutable type. The set
|
|
# of labels that the classifier chooses from must be fixed and
|
|
# finite.
|
|
# """
|
|
# def labels(self):
|
|
# """
|
|
# :return: the list of category labels used by this classifier.
|
|
# :rtype: list of (immutable)
|
|
# """
|
|
# raise NotImplementedError()
|
|
|
|
# def prob_classify(self, featureset):
|
|
# """
|
|
# Return a probability distribution over labels for the given
|
|
# featureset.
|
|
|
|
# If ``featureset`` is a list of featuresets, then return a
|
|
# corresponding list containing the probability distribution
|
|
# over labels for each of the given featuresets, where the
|
|
# *i*\ th element of this list is the most appropriate label for
|
|
# the *i*\ th element of ``featuresets``.
|
|
# """
|
|
# raise NotImplementedError()
|
|
|
|
# def classify(self, featureset):
|
|
# """
|
|
# Return the most appropriate label for the given featureset.
|
|
|
|
# If ``featureset`` is a list of featuresets, then return a
|
|
# corresponding list containing the most appropriate label for
|
|
# each of the given featuresets, where the *i*\ th element of
|
|
# this list is the most appropriate label for the *i*\ th element
|
|
# of ``featuresets``.
|
|
# """
|
|
# raise NotImplementedError()
|