You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
53 lines
1.7 KiB
Python
53 lines
1.7 KiB
Python
# Natural Language Toolkit: Chunk parsing API
|
|
#
|
|
# Copyright (C) 2001-2019 NLTK Project
|
|
# Author: Edward Loper <edloper@gmail.com>
|
|
# Steven Bird <stevenbird1@gmail.com> (minor additions)
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
|
|
##//////////////////////////////////////////////////////
|
|
## Chunk Parser Interface
|
|
##//////////////////////////////////////////////////////
|
|
|
|
from nltk.parse import ParserI
|
|
|
|
from nltk.chunk.util import ChunkScore
|
|
|
|
|
|
class ChunkParserI(ParserI):
|
|
"""
|
|
A processing interface for identifying non-overlapping groups in
|
|
unrestricted text. Typically, chunk parsers are used to find base
|
|
syntactic constituents, such as base noun phrases. Unlike
|
|
``ParserI``, ``ChunkParserI`` guarantees that the ``parse()`` method
|
|
will always generate a parse.
|
|
"""
|
|
|
|
def parse(self, tokens):
|
|
"""
|
|
Return the best chunk structure for the given tokens
|
|
and return a tree.
|
|
|
|
:param tokens: The list of (word, tag) tokens to be chunked.
|
|
:type tokens: list(tuple)
|
|
:rtype: Tree
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
def evaluate(self, gold):
|
|
"""
|
|
Score the accuracy of the chunker against the gold standard.
|
|
Remove the chunking the gold standard text, rechunk it using
|
|
the chunker, and return a ``ChunkScore`` object
|
|
reflecting the performance of this chunk peraser.
|
|
|
|
:type gold: list(Tree)
|
|
:param gold: The list of chunked sentences to score the chunker on.
|
|
:rtype: ChunkScore
|
|
"""
|
|
chunkscore = ChunkScore()
|
|
for correct in gold:
|
|
chunkscore.score(correct, self.parse(correct.leaves()))
|
|
return chunkscore
|