You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

304 lines
10 KiB
Python

#### PATTERN | DE ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2012 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# German linguistical tools using fast regular expressions.
from __future__ import unicode_literals
from __future__ import division
from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range
import os
import sys
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))
# Import parser base classes.
from pattern.text import (
Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
PUNCTUATION
)
# Import parser universal tagset.
from pattern.text import (
penntreebank2universal,
PTB, PENN, UNIVERSAL,
NOUN, VERB, ADJ, ADV, PRON, DET, PREP, ADP, NUM, CONJ, INTJ, PRT, PUNC, X
)
# Import parse tree base classes.
from pattern.text.tree import (
Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import sentiment analysis base classes.
from pattern.text import (
Sentiment, NOUN, VERB, ADJECTIVE, ADVERB
)
# Import spelling base class.
from pattern.text import (
Spelling
)
# Import verb tenses.
from pattern.text import (
INFINITIVE, PRESENT, PAST, FUTURE,
FIRST, SECOND, THIRD,
SINGULAR, PLURAL, SG, PL,
INDICATIVE, IMPERATIVE, SUBJUNCTIVE,
PROGRESSIVE,
PARTICIPLE, GERUND
)
# Import inflection functions.
from pattern.text.de.inflect import (
article, referenced, DEFINITE, INDEFINITE,
pluralize, singularize, NOUN, VERB, ADJECTIVE,
grade, comparative, superlative, COMPARATIVE, SUPERLATIVE,
verbs, conjugate, lemma, lexeme, tenses,
predicative, attributive,
gender, MASCULINE, MALE, FEMININE, FEMALE, NEUTER, NEUTRAL, PLURAL, M, F, N, PL,
NOMINATIVE, ACCUSATIVE, DATIVE, GENITIVE, SUBJECT, OBJECT, INDIRECT, PROPERTY
)
# Import all submodules.
from pattern.text.de import inflect
sys.path.pop(0)
#--- GERMAN PARSER ---------------------------------------------------------------------------------
# The German parser (accuracy 96% for known words) is based on Schneider & Volk's language model:
# Schneider, G. & Volk, M. (1998).
# Adding Manual Constraints and Lexical Look-up to a Brill-Tagger for German.
# Proceedings of the ESSLLI workshop on recent advances in corpus annotation. Saarbrucken, Germany.
# http://www.zora.uzh.ch/28579/
# The lexicon uses the Stuttgart/Tubinger Tagset (STTS):
# https://files.ifi.uzh.ch/cl/tagger/UIS-STTS-Diffs.html
STTS = "stts"
stts = tagset = {
"ADJ": "JJ",
"ADJA": "JJ", # das große Haus
"ADJD": "JJ", # er ist schnell
"ADV": "RB", # schon
"APPR": "IN", # in der Stadt
"APPRART": "IN", # im Haus
"APPO": "IN", # der Sache wegen
"APZR": "IN", # von jetzt an
"ART": "DT", # der, die, eine
"ARTDEF": "DT", # der, die
"ARTIND": "DT", # eine
"CARD": "CD", # zwei
"CARDNUM": "CD", # 3
"KOUI": "IN", # [um] zu leben
"KOUS": "IN", # weil, damit, ob
"KON": "CC", # und, oder, aber
"KOKOM": "IN", # als, wie
"KONS": "IN", # usw.
"NN": "NN", # Tisch, Herr
"NNS": "NNS", # Tischen, Herren
"NE": "NNP", # Hans, Hamburg
"PDS": "DT", # dieser, jener
"PDAT": "DT", # jener Mensch
"PIS": "DT", # keiner, viele, niemand
"PIAT": "DT", # kein Mensch
"PIDAT": "DT", # die beiden Brüder
"PPER": "PRP", # ich, er, ihm, mich, dir
"PPOS": "PRP$", # meins, deiner
"PPOSAT": "PRP$", # mein Buch, deine Mutter
"PRELS": "WDT", # der Hund, [der] bellt
"PRELAT": "WDT", # der Mann, [dessen] Hund bellt
"PRF": "PRP", # erinnere [dich]
"PWS": "WP", # wer
"PWAT": "WP", # wessen, welche
"PWAV": "WRB", # warum, wo, wann
"PAV": "RB", # dafur, dabei, deswegen, trotzdem
"PTKZU": "TO", # zu gehen, zu sein
"PTKNEG": "RB", # nicht
"PTKVZ": "RP", # pass [auf]!
"PTKANT": "UH", # ja, nein, danke, bitte
"PTKA": "RB", # am schönsten, zu schnell
"VVFIN": "VB", # du [gehst], wir [kommen] an
"VAFIN": "VB", # du [bist], wir [werden]
"VVINF": "VB", # gehen, ankommen
"VAINF": "VB", # werden, sein
"VVIZU": "VB", # anzukommen
"VVIMP": "VB", # [komm]!
"VAIMP": "VB", # [sei] ruhig!
"VVPP": "VBN", # gegangen, angekommen
"VAPP": "VBN", # gewesen
"VMFIN": "MD", # dürfen
"VMINF": "MD", # wollen
"VMPP": "MD", # gekonnt
"SGML": "SYM", #
"FM": "FW", #
"ITJ": "UH", # ach, tja
"XY": "NN", #
"XX": "NN", #
"LINUM": "LS", # 1.
"C": ",", # ,
"Co": ":", # :
"Ex": ".", # !
"Pc": ")", # )
"Po": "(", # (
"Q": ".", # ?
"QMc": "\"", # "
"QMo": "\"", # "
"S": ".", # .
"Se": ":", # ;
}
def stts2penntreebank(token, tag):
""" Converts an STTS tag to a Penn Treebank II tag.
For example: ohne/APPR => ohne/IN
"""
return (token, stts.get(tag, tag))
def stts2universal(token, tag):
""" Converts an STTS tag to a universal tag.
For example: ohne/APPR => ohne/PREP
"""
if tag in ("KON", "KOUI", "KOUS", "KOKOM"):
return (token, CONJ)
if tag in ("PTKZU", "PTKNEG", "PTKVZ", "PTKANT"):
return (token, PRT)
if tag in ("PDF", "PDAT", "PIS", "PIAT", "PIDAT", "PPER", "PPOS", "PPOSAT"):
return (token, PRON)
if tag in ("PRELS", "PRELAT", "PRF", "PWS", "PWAT", "PWAV", "PAV"):
return (token, PRON)
return penntreebank2universal(*stts2penntreebank(token, tag))
ABBREVIATIONS = set((
"Abs.", "Abt.", "Ass.", "Br.", "Ch.", "Chr.", "Cie.", "Co.", "Dept.", "Diff.",
"Dr.", "Eidg.", "Exp.", "Fam.", "Fr.", "Hrsg.", "Inc.", "Inv.", "Jh.", "Jt.", "Kt.",
"Mio.", "Mrd.", "Mt.", "Mte.", "Nr.", "Nrn.", "Ord.", "Ph.", "Phil.", "Pkt.",
"Prof.", "Pt.", " S.", "St.", "Stv.", "Tit.", "VII.", "al.", "begr.", "bzw.",
"chem.", "dent.", "dipl.", "e.g.", "ehem.", "etc.", "excl.", "exkl.", "hum.",
"i.e.", "incl.", "ing.", "inkl.", "int.", "iur.", "lic.", "med.", "no.", "oec.",
"phil.", "phys.", "pp.", "psych.", "publ.", "rer.", "sc.", "soz.", "spez.", "stud.",
"theol.", "usw.", "vet.", "vgl.", "vol.", "wiss.",
"d.h.", "h.c.", "o.ä.", "u.a.", "z.B.", "z.T.", "z.Zt."
))
def find_lemmata(tokens):
""" Annotates the tokens with lemmata for plural nouns and conjugated verbs,
where each token is a [word, part-of-speech] list.
"""
for token in tokens:
word, pos, lemma = token[0], token[1], token[0]
if pos.startswith(("DT", "JJ")):
lemma = predicative(word)
if pos == "NNS":
lemma = singularize(word)
if pos.startswith(("VB", "MD")):
lemma = conjugate(word, INFINITIVE) or word
token.append(lemma.lower())
return tokens
class Parser(_Parser):
def find_tokens(self, tokens, **kwargs):
kwargs.setdefault("abbreviations", ABBREVIATIONS)
kwargs.setdefault("replace", {})
return _Parser.find_tokens(self, tokens, **kwargs)
def find_lemmata(self, tokens, **kwargs):
return find_lemmata(tokens)
def find_tags(self, tokens, **kwargs):
if kwargs.get("tagset") in (PENN, None):
kwargs.setdefault("map", lambda token, tag: stts2penntreebank(token, tag))
if kwargs.get("tagset") == UNIVERSAL:
kwargs.setdefault("map", lambda token, tag: stts2universal(token, tag))
if kwargs.get("tagset") is STTS:
kwargs.setdefault("map", lambda token, tag: (token, tag))
# The lexicon uses Swiss spelling: "ss" instead of "ß".
# We restore the "ß" after parsing.
tokens_ss = [t.replace("ß", "ss") for t in tokens]
tokens_ss = _Parser.find_tags(self, tokens_ss, **kwargs)
return [[w] + tokens_ss[i][1:] for i, w in enumerate(tokens)]
parser = Parser(
lexicon = os.path.join(MODULE, "de-lexicon.txt"),
frequency = os.path.join(MODULE, "de-frequency.txt"),
morphology = os.path.join(MODULE, "de-morphology.txt"),
context = os.path.join(MODULE, "de-context.txt"),
default = ("NN", "NE", "CARDNUM"),
language = "de"
)
lexicon = parser.lexicon # Expose lexicon.
spelling = Spelling(
path = os.path.join(MODULE, "de-spelling.txt")
)
def tokenize(s, *args, **kwargs):
""" Returns a list of sentences, where punctuation marks have been split from words.
"""
return parser.find_tokens(s, *args, **kwargs)
def parse(s, *args, **kwargs):
""" Returns a tagged Unicode string.
"""
return parser.parse(s, *args, **kwargs)
def parsetree(s, *args, **kwargs):
""" Returns a parsed Text from the given string.
"""
return Text(parse(s, *args, **kwargs))
def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
""" Returns a parsed Text from the given parsed string.
"""
return Text(s, token)
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
""" Returns a list of (token, tag)-tuples from the given string.
"""
tags = []
for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
for token in sentence:
tags.append((token[0], token[1]))
return tags
def keywords(s, top=10, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return parser.find_keywords(s, **dict({
"frequency": parser.frequency,
"top": top,
"pos": ("NN",),
"ignore": ("rt",)}, **kwargs))
def suggest(w):
""" Returns a list of (word, confidence)-tuples of spelling corrections.
"""
return spelling.suggest(w)
split = tree # Backwards compatibility.
#---------------------------------------------------------------------------------------------------
# python -m pattern.de xml -s "Ein Unglück kommt selten allein." -OTCL
if __name__ == "__main__":
commandline(parse)