You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
153 lines
5.5 KiB
Python
153 lines
5.5 KiB
Python
# Natural Language Toolkit: Interface to scikit-learn classifiers
|
|
#
|
|
# Author: Lars Buitinck <L.J.Buitinck@uva.nl>
|
|
# URL: <http://nltk.org/>
|
|
# For license information, see LICENSE.TXT
|
|
"""
|
|
scikit-learn (http://scikit-learn.org) is a machine learning library for
|
|
Python. It supports many classification algorithms, including SVMs,
|
|
Naive Bayes, logistic regression (MaxEnt) and decision trees.
|
|
|
|
This package implements a wrapper around scikit-learn classifiers. To use this
|
|
wrapper, construct a scikit-learn estimator object, then use that to construct
|
|
a SklearnClassifier. E.g., to wrap a linear SVM with default settings:
|
|
|
|
>>> from sklearn.svm import LinearSVC
|
|
>>> from nltk.classify.scikitlearn import SklearnClassifier
|
|
>>> classif = SklearnClassifier(LinearSVC())
|
|
|
|
A scikit-learn classifier may include preprocessing steps when it's wrapped
|
|
in a Pipeline object. The following constructs and wraps a Naive Bayes text
|
|
classifier with tf-idf weighting and chi-square feature selection to get the
|
|
best 1000 features:
|
|
|
|
>>> from sklearn.feature_extraction.text import TfidfTransformer
|
|
>>> from sklearn.feature_selection import SelectKBest, chi2
|
|
>>> from sklearn.naive_bayes import MultinomialNB
|
|
>>> from sklearn.pipeline import Pipeline
|
|
>>> pipeline = Pipeline([('tfidf', TfidfTransformer()),
|
|
... ('chi2', SelectKBest(chi2, k=1000)),
|
|
... ('nb', MultinomialNB())])
|
|
>>> classif = SklearnClassifier(pipeline)
|
|
"""
|
|
|
|
from nltk.classify.api import ClassifierI
|
|
from nltk.probability import DictionaryProbDist
|
|
|
|
try:
|
|
from sklearn.feature_extraction import DictVectorizer
|
|
from sklearn.preprocessing import LabelEncoder
|
|
except ImportError:
|
|
pass
|
|
|
|
__all__ = ["SklearnClassifier"]
|
|
|
|
|
|
class SklearnClassifier(ClassifierI):
|
|
"""Wrapper for scikit-learn classifiers."""
|
|
|
|
def __init__(self, estimator, dtype=float, sparse=True):
|
|
"""
|
|
:param estimator: scikit-learn classifier object.
|
|
|
|
:param dtype: data type used when building feature array.
|
|
scikit-learn estimators work exclusively on numeric data. The
|
|
default value should be fine for almost all situations.
|
|
|
|
:param sparse: Whether to use sparse matrices internally.
|
|
The estimator must support these; not all scikit-learn classifiers
|
|
do (see their respective documentation and look for "sparse
|
|
matrix"). The default value is True, since most NLP problems
|
|
involve sparse feature sets. Setting this to False may take a
|
|
great amount of memory.
|
|
:type sparse: boolean.
|
|
"""
|
|
self._clf = estimator
|
|
self._encoder = LabelEncoder()
|
|
self._vectorizer = DictVectorizer(dtype=dtype, sparse=sparse)
|
|
|
|
def __repr__(self):
|
|
return "<SklearnClassifier(%r)>" % self._clf
|
|
|
|
def classify_many(self, featuresets):
|
|
"""Classify a batch of samples.
|
|
|
|
:param featuresets: An iterable over featuresets, each a dict mapping
|
|
strings to either numbers, booleans or strings.
|
|
:return: The predicted class label for each input sample.
|
|
:rtype: list
|
|
"""
|
|
X = self._vectorizer.transform(featuresets)
|
|
classes = self._encoder.classes_
|
|
return [classes[i] for i in self._clf.predict(X)]
|
|
|
|
def prob_classify_many(self, featuresets):
|
|
"""Compute per-class probabilities for a batch of samples.
|
|
|
|
:param featuresets: An iterable over featuresets, each a dict mapping
|
|
strings to either numbers, booleans or strings.
|
|
:rtype: list of ``ProbDistI``
|
|
"""
|
|
X = self._vectorizer.transform(featuresets)
|
|
y_proba_list = self._clf.predict_proba(X)
|
|
return [self._make_probdist(y_proba) for y_proba in y_proba_list]
|
|
|
|
def labels(self):
|
|
"""The class labels used by this classifier.
|
|
|
|
:rtype: list
|
|
"""
|
|
return list(self._encoder.classes_)
|
|
|
|
def train(self, labeled_featuresets):
|
|
"""
|
|
Train (fit) the scikit-learn estimator.
|
|
|
|
:param labeled_featuresets: A list of ``(featureset, label)``
|
|
where each ``featureset`` is a dict mapping strings to either
|
|
numbers, booleans or strings.
|
|
"""
|
|
|
|
X, y = list(zip(*labeled_featuresets))
|
|
X = self._vectorizer.fit_transform(X)
|
|
y = self._encoder.fit_transform(y)
|
|
self._clf.fit(X, y)
|
|
|
|
return self
|
|
|
|
def _make_probdist(self, y_proba):
|
|
classes = self._encoder.classes_
|
|
return DictionaryProbDist(dict((classes[i], p) for i, p in enumerate(y_proba)))
|
|
|
|
|
|
# skip doctests if scikit-learn is not installed
|
|
def setup_module(module):
|
|
from nose import SkipTest
|
|
|
|
try:
|
|
import sklearn
|
|
except ImportError:
|
|
raise SkipTest("scikit-learn is not installed")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from nltk.classify.util import names_demo, names_demo_features
|
|
from sklearn.linear_model import LogisticRegression
|
|
from sklearn.naive_bayes import BernoulliNB
|
|
|
|
# Bernoulli Naive Bayes is designed for binary classification. We set the
|
|
# binarize option to False since we know we're passing boolean features.
|
|
print("scikit-learn Naive Bayes:")
|
|
names_demo(
|
|
SklearnClassifier(BernoulliNB(binarize=False)).train,
|
|
features=names_demo_features,
|
|
)
|
|
|
|
# The C parameter on logistic regression (MaxEnt) controls regularization.
|
|
# The higher it's set, the less regularized the classifier is.
|
|
print("\n\nscikit-learn logistic regression:")
|
|
names_demo(
|
|
SklearnClassifier(LogisticRegression(C=1000)).train,
|
|
features=names_demo_features,
|
|
)
|